Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

numpy.sinh() in Python

  • Last Updated : 04 Dec, 2020

The numpy.sinh() is a mathematical function that helps user to calculate hyperbolic sine for all x(being the array elements).

Equivalent to 1/2 * (np.exp(x) – np.exp(-x)) or -1j * np.sin(1j*x).

Syntax: numpy.sinh(x[, out]) = ufunc ‘sin’)
Parameters :

array : [array_like] elements are in radians.
2pi Radians = 36o degrees

Return : An array with hyperbolic sine of x for all x i.e. array elements

 
Code #1 : Working




# Python3 program explaining
# sinh() function
  
import numpy as np
import math
  
in_array = [0, math.pi / 2, np.pi / 3, np.pi]
print ("Input array : \n", in_array)
  
Sinh_Values = np.sinh(in_array)
print ("\nSine Hyperbolic values : \n", Sinh_Values)

Output :

Input array : 
 [0, 1.5707963267948966, 1.0471975511965976, 3.141592653589793]

Sine Hyperbolic values : 
 [  0.           2.3012989    1.24936705  11.54873936]

 
Code #2 : Graphical representation




# Python program showing Graphical
# representation of sinh() function
import numpy as np
import matplotlib.pyplot as plt
  
in_array = np.linspace(-np.pi, np.pi, 12)
out_array = np.sinh(in_array)
  
print("in_array : ", in_array)
print("\nout_array : ", out_array)
  
# red for numpy.sinh()
plt.plot(in_array, out_array, color = 'red', marker = "o")
plt.title("numpy.sinh()")
plt.xlabel("X")
plt.ylabel("Y")
plt.show()

Output :

in_array :  [-3.14159265 -2.57039399 -1.99919533 -1.42799666 -0.856798   -0.28559933
  0.28559933  0.856798    1.42799666  1.99919533  2.57039399  3.14159265]

out_array :  [-11.54873936  -6.49723393  -3.62383424  -1.9652737   -0.96554336
  -0.28949778   0.28949778   0.96554336   1.9652737    3.62383424
   6.49723393  11.54873936]


 
References :
https://docs.scipy.org/doc/numpy-1.14.0/reference/generated/numpy.sinh.html#numpy.sinh
.


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!