# Numpy recarray.repeat() function | Python

• Last Updated : 27 Sep, 2019

In numpy, arrays may have a data-types containing fields, analogous to columns in a spreadsheet. An example is `[(a, int), (b, float)]`, where each entry in the array is a pair of (int, float). Normally, these attributes are accessed using dictionary lookups such as `arr['a'] and arr['b']`. Record arrays allow the fields to be accessed as members of the array, using `arr.a and arr.b`.

`numpy.recarray.repeat()` function is used to repeat elements of record array.

Syntax : `numpy.recarray.repeat(repeats, axis=None)`

Parameters:
repeats : [int or array of ints] The number of repetitions for each element.
axis : [int or None] The axis along which to repeat values. If None, the array is flattened before repeating.

Return : [ndarray] Output array which has the same shape as record array, except along the given axis.

Code #1 :

 `# Python program explaining``# numpy.recarray.repeat() method `` ` `# importing numpy as geek``import` `numpy as geek`` ` `# creating input array with 2 different field ``in_arr ``=` `geek.array([[(``5.0``, ``2``), (``3.0``, ``-``4``), (``6.0``, ``9``)],``                     ``[(``9.0``, ``1``), (``5.0``, ``4``), (``-``12.0``, ``-``7``)]],``                     ``dtype ``=``[(``'a'``, ``float``), (``'b'``, ``int``)])`` ` `print` `(``"Input array : "``, in_arr)`` ` `# convert it to a record array,``# using arr.view(np.recarray)``rec_arr ``=` `in_arr.view(geek.recarray)``print``(``"Record array of float: "``, rec_arr.a)``print``(``"Record array of int: "``, rec_arr.b)`` ` `# applying recarray.repeat methods``# to float record array along axis 1``out_arr ``=` `rec_arr.a.repeat(``3``, axis ``=` `1``)``print` `(``"Output repeated float array along axis 1 : "``, out_arr) `` ` `# applying recarray.repeat methods``# to float record array along default axis ``out_arr ``=` `rec_arr.a.repeat(``2``)``print` `(``"Output repeated float array along default axis : "``, out_arr) `` ` `# applying recarray.repeat methods``# to int record array along axis 0``out_arr ``=` `rec_arr.b.repeat(``2``, axis ``=` `0``)``print` `(``"Output repeated int array along axis 0 : "``, out_arr) `` ` `# applying recarray.repeat methods``# to int record array along default``out_arr ``=` `rec_arr.b.repeat(``2``)``print` `(``"Output repeated int array along default axis : "``, out_arr)  `
Output:

Input array : [[( 5., 2) ( 3., -4) ( 6., 9)]
[( 9., 1) ( 5., 4) (-12., -7)]]
Record array of float: [[ 5. 3. 6.]
[ 9. 5. -12.]]
Record array of int: [[ 2 -4 9]
[ 1 4 -7]]

Output repeated float array along axis 1 : [[ 5. 5. 5. 3. 3. 3. 6. 6. 6.]
[ 9. 9. 9. 5. 5. 5. -12. -12. -12.]]
Output repeated float array along default axis : [ 5. 5. 3. 3. 6. 6. 9. 9. 5. 5. -12. -12.]
Output repeated int array along axis 0 : [[ 2 -4 9]
[ 2 -4 9]
[ 1 4 -7]
[ 1 4 -7]]
Output repeated int array along default axis : [ 2 2 -4 -4 9 9 1 1 4 4 -7 -7]

Code #2 :

We are applying `numpy.recarray.repeat()` to whole record array.

 `# Python program explaining``# numpy.recarray.repeat() method `` ` `# importing numpy as geek``import` `numpy as geek`` ` `# creating input array with 2 different field ``in_arr ``=` `geek.array([[(``5.0``, ``2``), (``3.0``, ``4``), (``6.0``, ``-``7``)],``                     ``[(``9.0``, ``1``), (``6.0``, ``4``), (``-``2.0``, ``-``7``)]],``                     ``dtype ``=``[(``'a'``, ``float``), (``'b'``, ``int``)])`` ` `print` `(``"Input record array : "``, in_arr)`` ` `# convert it to a record array, ``# using arr.view(np.recarray)``rec_arr ``=` `in_arr.view(geek.recarray)`` ` `# applying recarray.repeat methods to  record array``out_arr ``=` `rec_arr.repeat(``3``)`` ` `print` `(``"Output repeated record array : "``, out_arr)`
Output:

Input record array : [[( 5., 2) ( 3., 4) ( 6., -7)]
[( 9., 1) ( 6., 4) (-2., -7)]]

Output repeated record array :
[( 5., 2) ( 5., 2) ( 5., 2) ( 3., 4) ( 3., 4) ( 3., 4) ( 6., -7)
( 6., -7) ( 6., -7) ( 9., 1) ( 9., 1) ( 9., 1) ( 6., 4) ( 6., 4)
( 6., 4) (-2., -7) (-2., -7) (-2., -7)]

My Personal Notes arrow_drop_up