# Numpy recarray.max() function | Python

In numpy, arrays may have a data-types containing fields, analogous to columns in a spreadsheet. An example is `[(a, int), (b, float)]`, where each entry in the array is a pair of (int, float). Normally, these attributes are accessed using dictionary lookups such as `arr['a'] and arr['b']`. Record arrays allow the fields to be accessed as members of the array, using `arr.a and arr.b`.

`numpy.recarray.max() ` function returns the maximum of record array or maximum along an axis.

Syntax : `numpy.recarray.max(axis=None, out=None, keepdims=False)`

Parameters:
axis : [None or int or tuple of ints, optional] Axis or axes along which to operate. By default, flattened input is used.
out : [ndarray, optional] A location into which the result is stored.
-> If provided, it must have a shape that the inputs broadcast to.
-> If not provided or None, a freshly-allocated array is returned.
keepdims : [bool, optional] If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array.

Return : [ndarray or scalar] Maximum of record array. If axis is None, the result is a scalar value. If axis is given, the result is an array of dimension arr.ndim – 1.

Code #1 :

 `# Python program explaining ` `# numpy.recarray.max() method  ` ` `  `# importing numpy as geek ` `import` `numpy as geek ` ` `  `# creating input array with 2 different field  ` `in_arr ``=` `geek.array([[(``5.0``, ``2``), (``3.0``, ``-``4``), (``6.0``, ``8``)], ` `                     ``[(``9.0``, ``1``), (``5.0``, ``4``), (``-``12.0``, ``-``7``)]], ` `                     ``dtype ``=``[(``'a'``, ``float``), (``'b'``, ``int``)]) ` ` `  `print` `(``"Input array : "``, in_arr) ` ` `  `# convert it to a record array, ` `# using arr.view(np.recarray) ` `rec_arr ``=` `in_arr.view(geek.recarray) ` `print``(``"Record array of float: "``, rec_arr.a) ` `print``(``"Record array of int: "``, rec_arr.b) ` ` `  `# applying recarray.max methods ` `# to float record array along default axis  ` `# i, e along flattened array ` `out_arr1 ``=` `rec_arr.a.``max``() ` `# Maximum of the flattened array  ` `print``(``"\nMax of float record array, axis = None : "``, out_arr1)  ` ` `  ` `  `# applying recarray.max methods ` `# to float record array along axis 0 ` `# i, e along vertical ` `out_arr2 ``=` `rec_arr.a.``max``(axis ``=` `0``) ` `# Maximum along 0 axis ` `print``(``"\nMax of float record array, axis = 0 : "``, out_arr2) ` ` `  ` `  `# applying recarray.max methods ` `# to float record array along axis 1 ` `# i, e along horizontal ` `out_arr3 ``=` `rec_arr.a.``max``(axis ``=` `1``) ` `# Maximum along 0 axis ` `print``(``"\nMax of float record array, axis = 1 : "``, out_arr3) ` ` `  ` `  `# applying recarray.max methods ` `# to int record array along default axis  ` `# i, e along flattened array ` `out_arr4 ``=` `rec_arr.b.``max``() ` `# Maximum of the flattened array  ` `print``(``"\nMax of int record array, axis = None : "``, out_arr4)  ` ` `  ` `  `# applying recarray.max methods ` `# to int record array along axis 0 ` `# i, e along vertical ` `out_arr5 ``=` `rec_arr.b.``max``(axis ``=` `0``) ` `# Maximum along 0 axis ` `print``(``"\nMax of int record array, axis = 0 : "``, out_arr5) ` ` `  ` `  `# applying recarray.max methods ` `# to int record array along axis 1 ` `# i, e along horizontal ` `out_arr6 ``=` `rec_arr.b.``max``(axis ``=` `1``) ` `# Maximum along 0 axis ` `print``(``"\nMax of int record array, axis = 1 : "``, out_arr6) `

Output:

```Input array :  [[(  5.,  2) (  3., -4) (  6.,  8)]
[(  9.,  1) (  5.,  4) (-12., -7)]]
Record array of float:  [[  5.   3.   6.]
[  9.   5. -12.]]
Record array of int:  [[ 2 -4  8]
[ 1  4 -7]]

Max of float record array, axis = None :  9.0

Max of float record array, axis = 0 :  [9. 5. 6.]

Max of float record array, axis = 1 :  [6. 9.]

Max of int record array, axis = None :  8

Max of int record array, axis = 0 :  [2 4 8]

Max of int record array, axis = 1 :  [8 4]
```

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.