With the help of numpy.random.triangular() method, we can get the random samples from triangular distribution from interval [left, right] and return the random samples by using this method.
Syntax : numpy.random.triangular(left, mode, right, size=None)
Parameters :
1) left – lower limit of the triangle.
2) mode – peak value of the distribution.
3) right – upper limit of the triangle.
4) size – total number of samples required.
Return : Return the random samples as numpy array.
Example #1 :
In this example we can see that by using numpy.random.triangular() method, we are able to get the random samples of triangular distribution and return the numpy array.
Python3
# import numpy import numpy as np import matplotlib.pyplot as plt # Using triangular() method gfg = np.random.triangular( - 5 , 0 , 5 , 5000 ) plt.hist(gfg, bins = 50 , density = True ) plt.show() |
Output :
Example #2 :
Python3
# import numpy import numpy as np import matplotlib.pyplot as plt # Using triangular() method gfg = np.random.triangular( - 10 , 8 , 10 , 15000 ) plt.hist(gfg, bins = 100 , density = True ) plt.show() |
Output :
Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.
To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.