# numpy.random.chisquare() in Python

• Last Updated : 15 Jul, 2020

With the help of chisquare() method, we can get chi-square distribution by using this method. Mainly we can use this distribution in hypothesis testing.

chi-square distribution

Syntax : numpy.random.chisquare(df, size=None)

Parameters :

1) df – number of degree of freedom and must be >0.

2) size – Output shape of scalar array.

Return : Return the scalar numpy array.

Example #1 :

In this example we can see that by using chisquare() method, we are able to get the chi-square distribution and return the scalar numpy array by using this method.

## Python3

 `# import chisquare``import` `numpy as np``import` `matplotlib.pyplot as plt`` ` `# Using chisquare() method``gfg ``=` `np.random.chisquare(``3``, ``1000``)`` ` `count, bins, ignored ``=` `plt.hist(gfg, ``14``, density ``=` `True``)``plt.show()`

Output :

Example #2 :

## Python3

 `# import chisquare``import` `numpy as np``import` `matplotlib.pyplot as plt`` ` `# Using chisquare() method``gfg ``=` `np.random.chisquare(``5``, ``10000``)``gfg1 ``=` `np.random.chisquare(gfg, ``10000``)`` ` `count, bins, ignored ``=` `plt.hist(gfg1, ``30``, density ``=` `True``)``plt.show()`

Output :

My Personal Notes arrow_drop_up