Skip to content
Related Articles

Related Articles

Improve Article
numpy.radians() and deg2rad() in Python
  • Last Updated : 04 Dec, 2020

The numpy.radians() is a mathematical function that helps user to convert angles from degree to radians.

Syntax : numpy.radians(x[, out]) = ufunc ‘radians’)
Parameters :

array : [array_like] elements are in degrees.
out : [ndaaray, optional]Output array of same shape as x.
          2pi Radians = 36o degrees

Return : An array with radian values in place of degree values.

 
Code #1 : Working






# Python3 program explaining
# degrees() function
  
import numpy as np
import math
  
in_array = np.arange(10.) * 90
print ("Degree values : \n", in_array)
  
radian_Values = np.radians(in_array)
print ("\nRadian values : \n", radian_Values)

Output :

Degree values : 
 [   0.   90.  180.  270.  360.  450.  540.  630.  720.  810.]

Radian values : 
 [  0.           1.57079633   3.14159265   4.71238898   6.28318531
   7.85398163   9.42477796  10.99557429  12.56637061  14.13716694]

 

numpy.deg2rad(x[, out]) = ufunc ‘deg2rad’) : This mathematical function helps user to convert angles from degrees to radians

Parameters :

array : [array_like] elements are in radians.
out : [ndaaray, optional]Output array of same shape as x.
          2pi Radians = 36o degrees

Return : Corresponding angles in radians.

 
Code #2 : deg2rad() Equivalent to radians()




# Python3 program explaining
# rad2deg() function
  
import numpy as np
import math
  
degree = np.arange(10.) * 90
print ("Degree values : \n", degree)
  
radian = np.deg2rad(degree)
print ("\nradian values : \n", radian)

Output :

Degree values : 
 [   0.   90.  180.  270.  360.  450.  540.  630.  720.  810.]

radian values : 
 [  0.           1.57079633   3.14159265   4.71238898   6.28318531
   7.85398163   9.42477796  10.99557429  12.56637061  14.13716694]

 
References : https://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.radians.html#numpy.radians
.

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :