# numpy.ptp() in Python

`numpy.ptp()`functions use to plays an important role in statistics by finding out Range of given numbers. Range = max value – min value.

Syntax : ndarray.ptp(axis=None, out=None)
Parameters :
arr :input array.
axis :axis along which we want the range value. Otherwise, it will consider arr to be flattened(works on all the axis). axis = 0 means along the column and axis = 1 means working along the row.
out : [ndarray, optional]Different array in which we want to place the result. The array must have same dimensions as expected output.

Return : Range of the array (a scalar value if axis is none) or array with range of values along specified axis.

Code #1 : Working

 `# Python Program illustrating  ` `# numpy.ptp() method  ` `   `  `import` `numpy as np ` `   `  `# 1D array  ` `arr ``=` `[``1``, ``2``, ``7``, ``20``, np.nan] ` `print``(``"arr : "``, arr)  ` `print``(``"Range of arr : "``, np.ptp(arr)) ` ` `  ` ``1D` `array  ` `arr ``=` `[``1``, ``2``, ``7``, ``10``, ``16``] ` `print``(``"arr : "``, arr)  ` `print``(``"Range of arr : "``, np.ptp(arr)) `

Output :

```arr :  [1, 2, 7, 20, nan]
Range of arr :  nan
arr :  [1, 2, 7, 10, 16]
Range of arr :  15
```

Code #2 :

 `# Python Program illustrating  ` `# numpy.ptp() method  ` ` `  `import` `numpy as np ` ` `  `# 3D array  ` `arr ``=` `[[``14``, ``17``, ``12``, ``33``, ``44``],   ` `       ``[``15``, ``6``, ``27``, ``8``, ``19``],  ` `       ``[``23``, ``2``, ``54``, ``1``, ``4``,]]  ` `print``(``"\narr : \n"``, arr)  ` `    `  `# Range of the flattened array  ` `print``(``"\nRange of arr, axis = None : "``, np.ptp(arr))  ` `    `  `# Range along the first axis  ` `# axis 0 means vertical  ` `print``(``"Range of arr, axis = 0 : "``, np.ptp(arr, axis ``=` `0``))  ` `    `  `# Range along the second axis  ` `# axis 1 means horizontal  ` `print``(``"Min of arr, axis = 1 : "``, np.ptp(arr, axis ``=` `1``))   `

Output :

```arr :
[[14, 17, 12, 33, 44], [15, 6, 27, 8, 19], [23, 2, 54, 1, 4]]

Range of arr, axis = None :  53
Range of arr, axis = 0 :  [ 9 15 42 32 40]
Min of arr, axis = 1 :  [32 21 53]
```

Code #3 :

 `# Python Program illustrating  ` `# numpy.ptp() method  ` ` `  `import` `numpy as np ` ` `  `arr1 ``=` `np.arange(``5``)  ` `print``(``"\nInitial arr1 : "``, arr1) ` `  `  `# using out parameter ` `np.ptp(arr, axis ``=` `0``, out ``=` `arr1) ` `  `  `print``(``"Changed arr1(having results) : "``, arr1) `

Output :

```Initial arr1 :  [0 1 2 3 4]
Changed arr1(having results) :  [ 9 15 42 32 40]
```

My Personal Notes arrow_drop_up Aspire to Inspire before I expire

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.