numpy.polyint() in Python

numpy.polyint(p, m) : Evaluates the anti – derivative of a polynomial with the specified order.

m antiderivative ‘P’ of polynomial ‘p’ satisfies

Parameters :
p : [array_like or poly1D] polynomial coefficients are given in decreasing order of powers. If the second parameter (root) is set to True then array values are the roots of the polynomial equation. For example, poly1d(3, 2, 6) = 3x2 + 2x + 6
m : [int, optional] Order of anti-derivative. Default is 1.



Return: Anti-Derivative of the polynomial.

Code #1:

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python code explaining  
# numpy.polyint() 
      
# importing libraries 
import numpy as np 
    
# Constructing polynomial  
p1 = np.poly1d([1, 2])  
p2 = np.poly1d([4, 9, 5, 4])  
      
print ("P1 : ", p1)  
print ("\n p2 : \n", p2) 
  
# Solve for x = 2  
print ("\n\np1 at x = 2 : ", p1(2))  
print ("p2 at x = 2 : ", p2(2))  
  
a = np.polyint(p1, 1
b = np.polyint(p2, 1
print ("\n\nUsing polyint"
print ("p1 anti-derivative of order = 1 : \n", a) 
print ("p2 anti-derivative of order = 1 : \n", b) 
  
a = np.polyint(p1, 2
b = np.polyint(p2, 2
print ("\n\nUsing polyint"
print ("p1 anti-derivative of order = 2 : \n", a) 
print ("p2 anti-derivative of order = 2 : \n", b) 

chevron_right


Output :

P1 :   
1 x + 2

 p2 : 
    3     2
4 x + 9 x + 5 x + 4


p1 at x = 2 :  4
p2 at x = 2 :  82


Using polyint
p1 anti-derivative of order = 1 : 
      2
0.5 x + 2 x
p2 anti-derivative of order = 1 : 
    4     3       2
1 x + 3 x + 2.5 x + 4 x

 
Code #2:

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python code explaining  
# numpy.polyint() 
       
# importing libraries 
import numpy as np 
     
# Constructing polynomial  
p1 = np.poly1d([1, 2])  
p2 = np.poly1d([4, 9, 5, 4])  
     
a = np.polyint(p1, 2
b = np.polyint(p2, 2
  
print ("\n\nUsing polyint"
print ("p1 anti-derivative of order = 2 : \n", a) 
print ("p2 anti-derivative of order = 2 : \n", b) 

chevron_right


Output :

Using polyint
p1 anti-derivative of order = 2 : 
         3     2
0.1667 x + 1 x
p2 anti-derivative of order = 2 : 
      5        4          3     2
0.2 x + 0.75 x + 0.8333 x + 2 x


My Personal Notes arrow_drop_up

Aspire to Inspire before I expire

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.




Article Tags :

Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.