numpy.polyint() in Python

numpy.polyint(p, m) : Evaluates the anti – derivative of a polynomial with the specified order.

m antiderivative ‘P’ of polynomial ‘p’ satisfies Parameters :
p : [array_like or poly1D] polynomial coefficients are given in decreasing order of powers. If the second parameter (root) is set to True then array values are the roots of the polynomial equation. For example, poly1d(3, 2, 6) = 3x2 + 2x + 6
m : [int, optional] Order of anti-derivative. Default is 1.

Return: Anti-Derivative of the polynomial.

Code #1:

 # Python code explaining   # numpy.polyint()         # importing libraries  import numpy as np       # Constructing polynomial   p1 = np.poly1d([1, 2])   p2 = np.poly1d([4, 9, 5, 4])          print ("P1 : ", p1)   print ("\n p2 : \n", p2)     # Solve for x = 2   print ("\n\np1 at x = 2 : ", p1(2))   print ("p2 at x = 2 : ", p2(2))      a = np.polyint(p1, 1)  b = np.polyint(p2, 1)  print ("\n\nUsing polyint")  print ("p1 anti-derivative of order = 1 : \n", a)  print ("p2 anti-derivative of order = 1 : \n", b)     a = np.polyint(p1, 2)  b = np.polyint(p2, 2)  print ("\n\nUsing polyint")  print ("p1 anti-derivative of order = 2 : \n", a)  print ("p2 anti-derivative of order = 2 : \n", b)

Output :

P1 :
1 x + 2

p2 :
3     2
4 x + 9 x + 5 x + 4

p1 at x = 2 :  4
p2 at x = 2 :  82

Using polyint
p1 anti-derivative of order = 1 :
2
0.5 x + 2 x
p2 anti-derivative of order = 1 :
4     3       2
1 x + 3 x + 2.5 x + 4 x

Code #2:

 # Python code explaining   # numpy.polyint()          # importing libraries  import numpy as np        # Constructing polynomial   p1 = np.poly1d([1, 2])   p2 = np.poly1d([4, 9, 5, 4])         a = np.polyint(p1, 2)  b = np.polyint(p2, 2)     print ("\n\nUsing polyint")  print ("p1 anti-derivative of order = 2 : \n", a)  print ("p2 anti-derivative of order = 2 : \n", b)

Output :

Using polyint
p1 anti-derivative of order = 2 :
3     2
0.1667 x + 1 x
p2 anti-derivative of order = 2 :
5        4          3     2
0.2 x + 0.75 x + 0.8333 x + 2 x

My Personal Notes arrow_drop_up Aspire to Inspire before I expire

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.