Related Articles
numpy.poly() in Python
• Last Updated : 04 Dec, 2020

The numpy.poly() function in the Sequence of roots of the polynomial returns the coefficient of the polynomial.

Syntax :numpy.poly(seq)

Parameters :
Seq : sequence of roots of the polynomial roots, or a matrix of roots.

Return: 1D array having coefficients of the polynomial from the highest degree to the lowest one.
c * x**(N) + c * x**(N-1) + … + c[N-1] * x + c[N] where c always equals 1.

 `# Python code explaining  ``# numpy.poly() ``     ` `# importing libraries ``import` `numpy as np ``   ` `# Giving the roots ``seq_1 ``=` `(``2``, ``1``, ``0``)``a ``=` `np.poly(seq_1)``print` `(``"Coefficients of the polynomial: "``, a)`` ` `# Constructing polynomial  ``p1 ``=` `np.poly1d(a)``print` `(``"\nAbove polynomial = \n"``, p1) `

Output :

```Coefficients of the polynomial:  [ 1. -3.  2.  0.]

Above polynomial =
3     2
1 x - 3 x + 2 x```

Code #2:

 `# Python code explaining  ``# numpy.poly() ``     ` `# importing libraries ``import` `numpy as np `` ` `# Giving the roots``seq_2 ``=` `(``2``, ``1``, ``0``, ``2``, ``4``, ``2``)``b ``=` `np.poly(seq_2)``print` `(``"Coefficients of the polynomial: "``, b)`` ` `# Constructing polynomial  ``p2 ``=` `np.poly1d(b)``print` `(``"\nAbove polynomial = \n"``, p2) `

Output :

```Coefficients of the polynomial:  [  1. -11.  46. -92.  88. -32.   0.]

Above polynomial =
6      5      4      3      2
1 x - 11 x + 46 x - 92 x + 88 x - 32 x
```

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up