numpy.percentile() in python

numpy.percentile()function used to compute the nth precentile of the given data (array elements) along the specified axis.

Syntax : numpy.percentile(arr, n, axis=None, out=None)
Parameters :
arr :input array.
n : percentile value.
axis : axis along which we want to calculate the percentile value. Otherwise, it will consider arr to be flattened(works on all the axis). axis = 0 means along the column and axis = 1 means working along the row.
out :Different array in which we want to place the result. The array must have same dimensions as expected output.

Return :nth Percentile of the array (a scalar value if axis is none)or array with percentile values along specified axis.

Code #1 : Working

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python Program illustrating 
# numpy.percentile() method 
    
import numpy as np
    
# 1D array 
arr = [20, 2, 7, 1, 34]
print("arr : ", arr) 
print("30th percentile of arr : "
       np.percentile(arr, 50))
print("25th percentile of arr : ",
       np.percentile(arr, 25))
print("75th percentile of arr : ",
       np.percentile(arr, 75))

chevron_right


Output :



arr :  [20, 2, 7, 1, 34]
30th percentile of arr :  7.0
25th percentile of arr :  2.0
75th percentile of arr :  20.0

 
Code #2 :

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python Program illustrating 
# numpy.percentile() method  
  
import numpy as np
  
# 2D array 
arr = [[14, 17, 12, 33, 44],  
       [15, 6, 27, 8, 19], 
       [23, 2, 54, 1, 4,]] 
print("\narr : \n", arr) 
     
# Percentile of the flattened array 
print("\n50th Percentile of arr, axis = None : "
      np.percentile(arr, 50)) 
print("0th Percentile of arr, axis = None : "
      np.percentile(arr, 0)) 
     
# Percentile along the axis = 0 
print("\n50th Percentile of arr, axis = 0 : "
      np.percentile(arr, 50, axis =0)) 
print("0th Percentile of arr, axis = 0 : "
      np.percentile(arr, 0, axis =0)) 

chevron_right


Output :

arr : 
 [[14, 17, 12, 33, 44], [15, 6, 27, 8, 19], [23, 2, 54, 1, 4]]

50th Percentile of arr, axis = None :  15.0
0th Percentile of arr, axis = None :  1.0

50th Percentile of arr, axis = 0 :  [15.  6. 27.  8. 19.]
0th Percentile of arr, axis = 0 :  [14.  2. 12.  1.  4.]

50th Percentile of arr, axis = 1 :  [17. 15.  4.]
0th Percentile of arr, axis = 1 :  [12.  6.  1.]

Code #3 :

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python Program illustrating 
# numpy.percentile() method 
  
import numpy as np
  
# 2D array 
arr = [[14, 17, 12, 33, 44],  
       [15, 6, 27, 8, 19], 
       [23, 2, 54, 1, 4,]] 
print("\narr : \n", arr) 
  
# Percentile along the axis = 1 
print("\n50th Percentile of arr, axis = 1 : "
      np.percentile(arr, 50, axis =1)) 
print("0th Percentile of arr, axis = 1 : "
      np.percentile(arr, 0, axis =1)) 
   
print("\n0th Percentile of arr, axis = 1 : \n"
      np.percentile(arr, 50, axis =1, keepdims=True))
print("\n0th Percentile of arr, axis = 1 : \n"
      np.percentile(arr, 0, axis =1, keepdims=True))

chevron_right


Output :

arr : 
 [[14, 17, 12, 33, 44], [15, 6, 27, 8, 19], [23, 2, 54, 1, 4]]

0th Percentile of arr, axis = 1 : 
 [[17.]
 [15.]
 [ 4.]]

0th Percentile of arr, axis = 1 : 
 [[12.]
 [ 6.]
 [ 1.]]


My Personal Notes arrow_drop_up

Aspire to Inspire before I expire

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.