Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

numpy.ndarray.fill() in Python

  • Last Updated : 28 Dec, 2018

numpy.ndarray.fill() method is used to fill the numpy array with a scalar value.

If we have to initialize a numpy array with an identical value then we use numpy.ndarray.fill(). Suppose we have to create a NumPy array a of length n, each element of which is v. Then we use this function as a.fill(v). We need not use loops to initialize an array if we are using this fill() function.

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course

Syntax : ndarray.fill(value)



Parameters:
value : All elements of a will be assigned this value.

Code #1:




# Python program explaining
# numpy.ndarray.fill() function
import numpy as geek
  
a = geek.empty([3, 3])
  
# Initializing each element of the array
# with 1 by using nested loops 
for i in range(3):
    for j in range(3):
        a[i][j] = 1
  
print("a is : \n", a)    
  
  
# now we are initializing each element
# of the array with 1 using fill() function. 
a.fill(1)
  
print("\nAfter using fill() a is : \n", a)
       
Output:
a is : 
 [[ 1.  1.  1.]
 [ 1.  1.  1.]
 [ 1.  1.  1.]]

After using fill() a is : 
 [[ 1.  1.  1.]
 [ 1.  1.  1.]
 [ 1.  1.  1.]]

 

Code #2:




# Python program explaining
# numpy.ndarray.fill() function
import numpy as geek
  
a = geek.arange(5)
  
print("a is \n", a)
  
# Using fill() method
a.fill(0)
  
print("\nNow a is :\n", a)
       
Output:
a is 
 [0 1 2 3 4]

Now a is :
 [0 0 0 0 0]

 
Code #3: numpy.ndarray.fill() also works on multidimensional array.




# Python program explaining
# numpy.ndarray.fill() function
  
import numpy as geek
  
a = geek.empty([3, 3])
  
# Using fill() method
a.fill(0)
  
print("a is :\n", a)
Output:
a is :
 [[ 0.  0.  0.]
 [ 0.  0.  0.]
 [ 0.  0.  0.]]



My Personal Notes arrow_drop_up
Recommended Articles
Page :