Related Articles
numpy.multiply() in Python
• Difficulty Level : Easy
• Last Updated : 16 May, 2020

`numpy.multiply()` function is used when we want to compute the multiplication of two array. It returns the product of arr1 and arr2, element-wise.

Syntax : numpy.multiply(arr1, arr2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, subok=True[, signature, extobj], ufunc ‘multiply’)

Parameters :
arr1: [array_like or scalar]1st Input array.
arr2: [array_like or scalar]2nd Input array.
dtype: The type of the returned array. By default, the dtype of arr is used.
out: [ndarray, optional] A location into which the result is stored.
-> If provided, it must have a shape that the inputs broadcast to.
-> If not provided or None, a freshly-allocated array is returned.
where: [array_like, optional] Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone.
**kwargs: Allows to pass keyword variable length of argument to a function. Used when we want to handle named argument in a function.

Return: [ndarray or scalar] The product of arr1 and arr2, element-wise.

Example #1 :

 `# Python program explaining``# numpy.multiply() function`` ` `import` `numpy as geek``in_num1 ``=` `4``in_num2 ``=` `6`` ` `print` `(``"1st Input  number : "``, in_num1)``print` `(``"2nd Input  number : "``, in_num2)``   ` `out_num ``=` `geek.multiply(in_num1, in_num2) ``print` `(``"output number : "``, out_num) `
Output :
```1st Input number :  4
2nd Input number :  6
output number :  24
```

Example #2 :
The following code is also known as the Hadamard product which is nothing but the element-wise-product of the two matrices. It is the most commonly used product for those who are interested in Machine Learning or statistics.

 `# Python program explaining``# numpy.multiply() function`` ` `import` `numpy as geek`` ` `in_arr1 ``=` `geek.array([[``2``, ``-``7``, ``5``], [``-``6``, ``2``, ``0``]])``in_arr2 ``=` `geek.array([[``0``, ``-``7``, ``8``], [``5``, ``-``2``, ``9``]])``  ` `print` `(``"1st Input array : "``, in_arr1)``print` `(``"2nd Input array : "``, in_arr2)``  ` `   ` `out_arr ``=` `geek.multiply(in_arr1, in_arr2) ``print` `(``"Resultant output array: "``, out_arr) `
Output :
```1st Input array :  [[ 2 -7  5]
[-6  2  0]]
2nd Input array :  [[ 0 -7  8]
[ 5 -2  9]]
Resultant output array:  [[  0  49  40]
[-30  -4   0]]
```

Another way to find the same is

 `import` `numpy as geek``in_arr1``=``geek.matrix([[``2``, ``-``7``, ``5``], [``-``6``, ``2``, ``0``]])``in_arr2 ``=` `geek.matrix([[``0``, ``-``7``, ``8``], [``5``, ``-``2``, ``9``]])``   ` `print` `(``"1st Input array : "``, in_arr1)``print` `(``"2nd Input array : "``, in_arr2)``  ` `out_arr``=``geek.array(in_arr1)``*``geek.array(in_arr2)``print` `(``"Resultant output array: "``, out_arr)`

Output :

```1st Input array :  [[ 2 -7  5]
[-6  2  0]]
2nd Input array :  [[ 0 -7  8]
[ 5 -2  9]]
Resultant output array:  [[  0  49  40]
[-30  -4   0]]
```

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up