numpy.multiply() in Python

numpy.multiply() function is used when we want to compute the multiplication of two array. It returns the product of arr1 and arr2, element-wise.

Syntax : numpy.multiply(arr1, arr2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, subok=True[, signature, extobj], ufunc ‘multiply’)

Parameters :
arr1: [array_like or scalar]1st Input array.
arr2: [array_like or scalar]2nd Input array.
dtype: The type of the returned array. By default, the dtype of arr is used.
out: [ndarray, optional] A location into which the result is stored.
  -> If provided, it must have a shape that the inputs broadcast to.
  -> If not provided or None, a freshly-allocated array is returned.
where: [array_like, optional] Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone.
**kwargs: Allows to pass keyword variable length of argument to a function. Used when we want to handle named argument in a function.



Return: [ndarray or scalar] The product of arr1 and arr2, element-wise.

Example #1 :

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program explaining
# numpy.multiply() function
  
import numpy as geek
in_num1 = 4
in_num2 = 6
  
print ("1st Input  number : ", in_num1)
print ("2nd Input  number : ", in_num2)
    
out_num = geek.multiply(in_num1, in_num2) 
print ("output number : ", out_num) 

chevron_right


Output :

1st Input number :  4
2nd Input number :  6
output number :  24

 

Example #2 :
The following code is also known as the Hadamard product which is nothing but the element-wise-product of the two matrices. It is the most commonly used product for those who are interested in Machine Learning or statistics.

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program explaining
# numpy.multiply() function
  
import numpy as geek
  
in_arr1 = geek.array([[2, -7, 5], [-6, 2, 0]])
in_arr2 = geek.array([[0, -7, 8], [5, -2, 9]])
   
print ("1st Input array : ", in_arr1)
print ("2nd Input array : ", in_arr2)
   
    
out_arr = geek.multiply(in_arr1, in_arr2) 
print ("Resultant output array: ", out_arr) 

chevron_right


Output :

1st Input array :  [[ 2 -7  5]
 [-6  2  0]]
2nd Input array :  [[ 0 -7  8]
 [ 5 -2  9]]
Resultant output array:  [[  0  49  40]
 [-30  -4   0]]

Another way to find the same is

filter_none

edit
close

play_arrow

link
brightness_4
code

import numpy as geek
in_arr1=geek.matrix([[2, -7, 5], [-6, 2, 0]])
in_arr2 = geek.matrix([[0, -7, 8], [5, -2, 9]])
    
print ("1st Input array : ", in_arr1)
print ("2nd Input array : ", in_arr2)
   
out_arr=geek.array(in_arr1)*geek.array(in_arr2)
print ("Resultant output array: ", out_arr)

chevron_right


Output :

1st Input array :  [[ 2 -7  5]
 [-6  2  0]]
2nd Input array :  [[ 0 -7  8]
 [ 5 -2  9]]
Resultant output array:  [[  0  49  40]
 [-30  -4   0]]



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : riasehgal1999