Skip to content
Related Articles

Related Articles

Improve Article

numpy.mod() in Python

  • Last Updated : 10 Feb, 2019
Geek Week

numpy.mod() is another function for doing mathematical operations in numpy.It returns element-wise remainder of division between two array arr1 and arr2 i.e. arr1 % arr2 .It returns 0 when arr2 is 0 and both arr1 and arr2 are (arrays of) integers.

Syntax : numpy.mod(arr1, arr2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, subok=True[, signature, extobj], ufunc ‘remainder’)

Parameters :
arr1 : [array_like] Dividend array.
arr2 : [array_like] Divisor array.
dtype : The type of the returned array. By default, the dtype of arr is used.
out : [ndarray, optional] A location into which the result is stored.
  -> If provided, it must have a shape that the inputs broadcast to.
  -> If not provided or None, a freshly-allocated array is returned.
where : [array_like, optional] Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone.
**kwargs : Allows to pass keyword variable length of argument to a function. Used when we want to handle named argument in a function.

Return : [ndarray] The element-wise remainder i.e arr1 % arr2 .

Code #1 :






# Python program explaining
# numpy.mod() function
  
import numpy as geek
in_num1 = 6
in_num2 = 4
  
print ("Dividend : ", in_num1)
print ("Divisor : ", in_num2)
    
out_num = geek.mod(in_num1, in_num2) 
print ("Remainder : ", out_num) 
Output :
Dividend :  6
Divisor :  4
Remainder :  2

 

Code #2 :




# Python program explaining
# numpy.mod() function
  
import numpy as geek
  
in_arr1 = geek.array([2, -4, 7])
in_arr2 = geek.array([2, 3, 4])
   
print ("Dividend array : ", in_arr1)
print ("Divisor array : ", in_arr2)
   
    
out_arr = geek.mod(in_arr1, in_arr2) 
print ("Output remainder array: ", out_arr) 
Output :
Dividend array :  [ 2 -4  7]
Divisor array :  [2 3 4]
Output remainder array:  [0 2 3]

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :