# numpy.mean() in Python

`numpy.mean(arr, axis = None)` : Compute the arithmetic mean (average) of the given data (array elements) along the specified axis.

Parameters :
arr : [array_like]input array.
axis : [int or tuples of int]axis along which we want to calculate the arithmetic mean. Otherwise, it will consider arr to be flattened(works on all
the axis). axis = 0 means along the column and axis = 1 means working along the row.
out : [ndarray, optional]Different array in which we want to place the result. The array must have the same dimensions as expected output.
dtype : [data-type, optional]Type we desire while computing mean.

Results : Arithmetic mean of the array (a scalar value if axis is none) or array with mean values along specified axis.

Code #1:

 `# Python Program illustrating  ` `# numpy.mean() method  ` `import` `numpy as np ` `   `  `# 1D array  ` `arr ``=` `[``20``, ``2``, ``7``, ``1``, ``34``] ` ` `  `print``(``"arr : "``, arr)  ` `print``(``"mean of arr : "``, np.mean(arr)) ` `  `

Output :

```arr :  [20, 2, 7, 1, 34]
mean of arr :  12.8
```

Code #2:

 `# Python Program illustrating  ` `# numpy.mean() method    ` `import` `numpy as np ` `   `  ` `  `# 2D array  ` `arr ``=` `[[``14``, ``17``, ``12``, ``33``, ``44``],   ` `       ``[``15``, ``6``, ``27``, ``8``, ``19``],  ` `       ``[``23``, ``2``, ``54``, ``1``, ``4``, ]]  ` `   `  `# mean of the flattened array  ` `print``(``"\nmean of arr, axis = None : "``, np.mean(arr))  ` `   `  `# mean along the axis = 0  ` `print``(``"\nmean of arr, axis = 0 : "``, np.mean(arr, axis ``=` `0``))  ` `  `  `# mean along the axis = 1  ` `print``(``"\nmean of arr, axis = 1 : "``, np.mean(arr, axis ``=` `1``)) ` ` `  `out_arr ``=` `np.arange(``3``) ` `print``(``"\nout_arr : "``, out_arr)  ` `print``(``"mean of arr, axis = 1 : "``,  ` `      ``np.mean(arr, axis ``=` `1``, out ``=` `out_arr)) `

Output :

```mean of arr, axis = None :  18.6

mean of arr, axis = 0 :  [17.33333333  8.33333333 31.         14.         22.33333333]

mean of arr, axis = 1 :  [24.  15.  16.8]

out_arr :  [0 1 2]
mean of arr, axis = 1 :  [24 15 16]
```

Whether you're preparing for your first job interview or aiming to upskill in this ever-evolving tech landscape, GeeksforGeeks Courses are your key to success. We provide top-quality content at affordable prices, all geared towards accelerating your growth in a time-bound manner. Join the millions we've already empowered, and we're here to do the same for you. Don't miss out - check it out now!