# Numpy MaskedArray.power() function | Python

• Last Updated : 24 Oct, 2019

`numpy.MaskedArray.power()` function is used to compute element-wise base array raised to power from second array. It raise each base in arr1 to the positionally-corresponding power in arr2. arr1 and arr2 must be broadcastable to the same shape. Note that an integer type raised to a negative integer power will raise a `ValueError`.

Syntax : `numpy.ma.power(arr1, arr2, third=None)`

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course

Parameters:
arr1 : [ array_like ] The base masked array.
arr2 :[ array_like ] The exponents masked array.
third : [ndarray, optional] A location into which the result is stored.
-> If provided, it must have a shape that the inputs broadcast to.
-> If not provided or None, a freshly-allocated array is returned.

Return : [ ndarray] The bases in arr1 raised to the exponents in arr2.

Code #1 :

 `# Python program explaining``# numpy.MaskedArray.power() method ``    ` `# importing numpy as geek  ``# and numpy.ma module as ma ``import` `numpy as geek ``import` `numpy.ma as ma ``    ` `# creating base array ``base_arr ``=` `geek.array([``0``, ``1``, ``2``, ``3``, ``4``, ``5``]) ``print` `(``"Input base array : "``, base_arr)``     ` `# Now we are creating a base masked array. ``# by making one entry as invalid.  ``base_mask_arr ``=` `ma.masked_array(base_arr, mask ``=``[ ``0``, ``0``, ``0``, ``0``, ``1``, ``0``]) ``print` `(``"Base Masked array : "``, base_mask_arr) `` ` `# creating exponent array ``exp_arr ``=` `geek.array([``0``, ``2``, ``1``, ``4``, ``2``, ``3``]) ``print` `(``"Input exponent array : "``, exp_arr)``     ` `# Now we are creating a exponent masked array. ``# by making one entry as invalid.  ``exp_mask_arr ``=` `ma.masked_array(exp_arr, mask ``=``[ ``0``, ``1``, ``0``, ``0``, ``1``, ``0``]) ``print` `(``"Exponent Masked array : "``, exp_mask_arr) ``    ` `# applying MaskedArray.power methods ``# to masked array``out_arr ``=` `ma.power(base_mask_arr, exp_mask_arr) ``print` `(``"Output masked array : "``, out_arr)`
Output:
```Input base array :  [0 1 2 3 4 5]
Base Masked array :  [0 1 2 3 -- 5]
Input exponent array :  [0 2 1 4 2 3]
Exponent Masked array :  [0 -- 1 4 -- 3]
Output masked array :  [1 -- 2 81 -- 125]
```

My Personal Notes arrow_drop_up
Recommended Articles
Page :