Skip to content
Related Articles

Related Articles

Save Article
Improve Article
Save Article
Like Article

Numpy MaskedArray.masked_where() function | Python

  • Last Updated : 27 Sep, 2019

In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or recorded an invalid value. The numpy.ma module provides a convenient way to address this issue, by introducing masked arrays.Masked arrays are arrays that may have missing or invalid entries.

numpy.MaskedArray.masked_where() function is used to mask an array where a condition is met.It return arr as an array masked where condition is True. Any masked values of arr or condition are also masked in the output.

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course

Syntax : numpy.ma.masked_where(condition, arr, copy=True)



Parameters:
condition : [array_like] Masking condition. When condition tests floating point values for equality, consider using masked_values instead.
arr : [ndarray] Input array which we want to mask.
copy : [bool] If True (default) make a copy of arr in the result. If False modify arr in place and return a view.

Return : [ MaskedArray] The result of masking arr where condition is True..

Code #1 :




# Python program explaining
# numpy.MaskedArray.masked_where() method 
  
# importing numpy as geek 
# and numpy.ma module as ma
import numpy as geek
import numpy.ma as ma
  
# creating input array 
in_arr = geek.array([1, 2, 3, -1, 2])
print ("Input array : ", in_arr)
  
# applying MaskedArray.masked_where methods 
# to input array where value<= 1
mask_arr = ma.masked_where(in_arr<= 1, in_arr)
print ("Masked array : ", mask_arr)
Output:
Input array :  [ 1  2  3 -1  2]
Masked array :  [-- 2 3 -- 2]

 

Code #2 :




# Python program explaining
# numpy.MaskedArray.masked_where() method 
  
# importing numpy as geek 
# and numpy.ma module as ma
import numpy as geek
import numpy.ma as ma
  
# creating input array in_arr1 
in_arr1 = geek.arange(4)
print ("1st Input array : ", in_arr1)
  
# applying MaskedArray.masked_where methods 
# to input array in_arr1 where value = 1
mask_arr1 = ma.masked_where(in_arr1 == 1, in_arr1)
print ("1st Masked array : ", mask_arr1)
  
# creating input array in_arr2 
in_arr2 = geek.arange(4)
print ("2nd Input array : ", in_arr2)
  
# applying MaskedArray.masked_where methods 
# to input array in_arr2 where value = 1
mask_arr2 = ma.masked_where(in_arr2 == 3, in_arr2)
print ("2nd Masked array : ", mask_arr2)
  
# applying MaskedArray.masked_where methods 
# to 1st masked array where second masked array
# is used as condition
res_arr = ma.masked_where(mask_arr1 == 3, mask_arr2)
print("Resultant Masked array : ", res_arr)
Output:
1st Input array :  [0 1 2 3]
1st Masked array :  [0 -- 2 3]
2nd Input array :  [0 1 2 3]
2nd Masked array :  [0 1 2 --]
Resultant Masked array :  [0 -- 2 --]



My Personal Notes arrow_drop_up
Recommended Articles
Page :