Skip to content
Related Articles

Related Articles

Save Article
Improve Article
Save Article
Like Article

Numpy MaskedArray.flatten() function | Python

  • Last Updated : 03 Oct, 2019

numpy.MaskedArray.flatten() function is used to return a copy of the input masked array collapsed into one dimension.

Syntax : numpy.ma.flatten(order='C')

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course

Parameters:
order : [‘C’, ‘F’, ‘A’, ‘K’, optional] Whether to flatten in C (row-major), Fortran (column-major) order, or preserve the C/Fortran ordering from a. The default is ‘C’.



Return : [ ndarray] A copy of the input array, flattened to one dimension.

Code #1 :




# Python program explaining
# numpy.MaskedArray.flatten() method 
    
# importing numpy as geek  
# and numpy.ma module as ma 
import numpy as geek 
import numpy.ma as ma 
    
# creating input array of 2 * 2  
in_arr = geek.array([[10, 20], [-10, 40]]) 
print ("Input array : ", in_arr) 
    
# Now we are creating a masked array 
# by making one entry as invalid.  
mask_arr = ma.masked_array(in_arr, mask =[[ 1, 0], [ 0, 0]]) 
print ("Masked array : ", mask_arr) 
    
# applying MaskedArray.flatten methods to make  
# it a 1D flattened array
out_arr = mask_arr.flatten() 
print ("Output flattened masked array : ", out_arr) 
Output:
Input array :  [[ 10  20]
 [-10  40]]
Masked array :  [[-- 20]
 [-10 40]]
Output flattened masked array :  [-- 20 -10 40]

 

Code #2 :




# Python program explaining
# numpy.MaskedArray.flatten() method 
    
# importing numpy as geek  
# and numpy.ma module as ma 
import numpy as geek 
import numpy.ma as ma 
    
# creating input array 
in_arr = geek.array([[[ 2e8, 3e-5]], [[ -4e-6, 2e5]]])
print ("Input array : ", in_arr) 
    
# Now we are creating a masked array 
# by making one entry as invalid.  
mask_arr = ma.masked_array(in_arr, mask =[[[ 1, 0]], [[ 0, 0]]]) 
print ("Masked array : ", mask_arr) 
    
# applying MaskedArray.flatten methods to make  
# it a 1D masked array
out_arr = mask_arr.flatten(order ='F'
print ("Output flattened masked array : ", out_arr)
Output:
Input array :  [[[ 2.e+08  3.e-05]]

 [[-4.e-06  2.e+05]]]
Masked array :  [[[-- 3e-05]]

 [[-4e-06 200000.0]]]
Output flattened masked array :  [-- -4e-06 3e-05 200000.0]




My Personal Notes arrow_drop_up
Recommended Articles
Page :