Related Articles

Related Articles

Numpy MaskedArray.common_fill_value() function | Python
  • Last Updated : 29 Oct, 2019

numpy.MaskedArray.common_fill_value() function is used to return the common filling value between two masked arrays.If arr1.fill_value == arr2.fill_value then it returns the fill value, otherwise return None.

Syntax : numpy.ma.common_fill_value(arr1, arr2)

Parameters:
arr1, arr2 :[ MaskedArray ] The masked arrays for which to compare fill values.

Return : [ scalar or None] The common fill value or None.

Code #1 :



filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program explaining
# numpy.MaskedArray.common_fill_value() method 
    
# importing numpy as geek  
# and numpy.ma module as ma 
import numpy as geek 
import numpy.ma as ma 
    
# creating input arrays  
in_arr1 = geek.array([[1, 2], [ 3, -1], [ 5, -3]])
print ("1st Input array : ", in_arr1) 
  
in_arr2 = geek.array([[10, 20], [ 30, -10], [ 50, -30]])
print ("2nd Input array : ", in_arr2) 
    
# Now we are creating masked arrays. 
# by making  entry as invalid.  
mask_arr1 = ma.masked_array(in_arr1, mask =[[1, 0], [ 1, 0], [ 0, 0]],
                                                       fill_value = 5
print ("1st Masked array : ", mask_arr1) 
  
mask_arr2 = ma.masked_array(in_arr2, mask =[[1, 1], [ 1, 0], [ 0, 0]], 
                                                      fill_value = 5
print ("2nd Masked array : ", mask_arr2) 
    
# applying MaskedArray.common_fill_value    
# methods to masked array
out_arr = ma.common_fill_value(mask_arr1, mask_arr2) 
print ("common filled value : ", out_arr) 

chevron_right


Output:

1st Input array :  [[ 1  2]
 [ 3 -1]
 [ 5 -3]]
2nd Input array :  [[ 10  20]
 [ 30 -10]
 [ 50 -30]]
1st Masked array :  [[-- 2]
 [-- -1]
 [5 -3]]
2nd Masked array :  [[-- --]
 [-- -10]
 [50 -30]]
common filled value :  5

 

Code #2 :

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program explaining
# numpy.MaskedArray.common_fill_value() method 
    
# importing numpy as geek  
# and numpy.ma module as ma 
import numpy as geek 
import numpy.ma as ma 
    
# creating input arrays  
in_arr1 = geek.array([[1, 2], [ 3, -1], [ 5, -3]])
print ("1st Input array : ", in_arr1) 
  
in_arr2 = geek.array([[10, 20], [ 30, -10], [ 50, -30]])
print ("2nd Input array : ", in_arr2) 
    
# Now we are creating masked arrays. 
# by making  entry as invalid.  
mask_arr1 = ma.masked_array(in_arr1, mask =[[1, 0], [ 1, 0], [ 0, 0]],
                                                      fill_value = 5
print ("1st Masked array : ", mask_arr1) 
  
mask_arr2 = ma.masked_array(in_arr2, mask =[[1, 1], [ 1, 0], [ 0, 0]],
                                                     fill_value = 10
print ("2nd Masked array : ", mask_arr2) 
    
# applying MaskedArray.common_fill_value    
# methods to masked array
out_arr = ma.common_fill_value(mask_arr1, mask_arr2) 
print ("common filled value : ", out_arr) 

chevron_right


Output:

1st Input array :  [[ 1  2]
 [ 3 -1]
 [ 5 -3]]
2nd Input array :  [[ 10  20]
 [ 30 -10]
 [ 50 -30]]
1st Masked array :  [[-- 2]
 [-- -1]
 [5 -3]]
2nd Masked array :  [[-- --]
 [-- -10]
 [50 -30]]
common filled value :  None

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.




My Personal Notes arrow_drop_up
Recommended Articles
Page :