numpy.MaskedArray.atleast_3d()
function is used to convert inputs to masked arrays with at least three dimension.Scalar, 1-dimensional and 2-dimensional arrays are converted to 3-dimensional arrays, whilst higher-dimensional inputs are preserved.
Syntax :
numpy.ma.atleast_3d(*arys)
Parameters:
arys:[ array_like] One or more input arrays.Return : [ ndarray] An array, or list of arrays, each with
arr.ndim >= 3
Code #1 :
# Python program explaining # numpy.MaskedArray.atleast_3d() method # importing numpy as geek # and numpy.ma module as ma import numpy as geek import numpy.ma as ma # creating input arrays in_arr1 = geek.array([ 3 , - 1 , 5 , - 3 ]) print ( "1st Input array : " , in_arr1) in_arr2 = geek.array( 2 ) print ( "2nd Input array : " , in_arr2) in_arr3 = geek.array([[ 1 , 2 ], [ 3 , - 1 ], [ 5 , - 3 ]]) print ( "3rd Input array : " , in_arr3) # Now we are creating masked array. # by making entry as invalid. mask_arr1 = ma.masked_array(in_arr1, mask = [ 1 , 0 , 1 , 0 ]) print ( "1st Masked array : " , mask_arr1) mask_arr2 = ma.masked_array(in_arr2, mask = 0 ) print ( "2nd Masked array : " , mask_arr2) mask_arr3 = ma.masked_array(in_arr3, mask = [[ 1 , 0 ], [ 0 , 1 ], [ 0 , 0 ]]) print ( "3rd Masked array : " , mask_arr3) # applying MaskedArray.atleast_3d methods # to masked array out_arr = ma.atleast_2d(mask_arr1, mask_arr2, mask_arr3) print ( "Output masked array : " , out_arr) |
1st Input array : [ 3 -1 5 -3] 2nd Input array : 2 3rd Input array : [[ 1 2] [ 3 -1] [ 5 -3]] 1st Masked array : [-- -1 -- -3] 2nd Masked array : 2 3rd Masked array : [[-- 2] [3 --] [5 -3]] Output masked array : [masked_array(data=[[--, -1, --, -3]], mask=[[ True, False, True, False]], fill_value=999999), masked_array(data=[[2]], mask=[[False]], fill_value=999999), masked_array( data=[[--, 2], [3, --], [5, -3]], mask=[[ True, False], [False, True], [False, False]], fill_value=999999)]
Code #2 :
# Python program explaining # numpy.MaskedArray.atleast_3d() method # importing numpy as geek # and numpy.ma module as ma import numpy as geek import numpy.ma as ma # creating input array in_arr = geek.array([[[ 2e8 , 3e - 5 ]], [[ - 45.0 , 2e5 ]]]) print ( "Input array : " , in_arr) # Now we are creating a masked array. # by making one entry as invalid. mask_arr = ma.masked_array(in_arr, mask = [[[ 1 , 0 ]], [[ 0 , 0 ]]]) print ( "3D Masked array : " , mask_arr) # applying MaskedArray.atleast_3d methods # to masked array out_arr = ma.atleast_3d(mask_arr) print ( "Output masked array : " , out_arr) |
Input array : [[[ 2.0e+08 3.0e-05]] [[-4.5e+01 2.0e+05]]] 3D Masked array : [[[-- 3e-05]] [[-45.0 200000.0]]] Output masked array : [[[-- 3e-05]] [[-45.0 200000.0]]]
Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.
To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.