Related Articles

Related Articles

Numpy MaskedArray.atleast_3d() function | Python
  • Last Updated : 13 Oct, 2019

numpy.MaskedArray.atleast_3d() function is used to convert inputs to masked arrays with at least three dimension.Scalar, 1-dimensional and 2-dimensional arrays are converted to 3-dimensional arrays, whilst higher-dimensional inputs are preserved.

Syntax : numpy.ma.atleast_3d(*arys)

Parameters:
arys:[ array_like] One or more input arrays.

Return : [ ndarray] An array, or list of arrays, each with arr.ndim >= 3

Code #1 :



filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program explaining
# numpy.MaskedArray.atleast_3d() method 
    
# importing numpy as geek  
# and numpy.ma module as ma 
import numpy as geek 
import numpy.ma as ma 
    
# creating input arrays  
in_arr1 = geek.array([ 3, -1, 5, -3])
print ("1st Input array : ", in_arr1)
  
in_arr2 = geek.array(2)
print ("2nd Input array : ", in_arr2)
  
in_arr3 = geek.array([[1, 2], [ 3, -1], [ 5, -3]])
print ("3rd Input array : ", in_arr3) 
    
# Now we are creating  masked array. 
# by making  entry as invalid.  
mask_arr1 = ma.masked_array(in_arr1, mask =[ 1, 0, 1, 0]) 
print ("1st Masked array : ", mask_arr1)
  
mask_arr2 = ma.masked_array(in_arr2, mask = 0
print ("2nd Masked array : ", mask_arr2)
  
mask_arr3 = ma.masked_array(in_arr3, mask =[[ 1, 0], [ 0, 1], [ 0, 0]]) 
print ("3rd Masked array : ", mask_arr3)
    
# applying MaskedArray.atleast_3d methods 
# to masked array 
out_arr = ma.atleast_2d(mask_arr1, mask_arr2, mask_arr3) 
print ("Output masked array : ", out_arr) 

chevron_right


Output:

1st Input array :  [ 3 -1  5 -3]
2nd Input array :  2
3rd Input array :  [[ 1  2]
 [ 3 -1]
 [ 5 -3]]
1st Masked array :  [-- -1 -- -3]
2nd Masked array :  2
3rd Masked array :  [[-- 2]
 [3 --]
 [5 -3]]
Output masked array :  [masked_array(data=[[--, -1, --, -3]],
             mask=[[ True, False,  True, False]],
       fill_value=999999), masked_array(data=[[2]],
             mask=[[False]],
       fill_value=999999), masked_array(
  data=[[--, 2],
        [3, --],
        [5, -3]],
  mask=[[ True, False],
        [False,  True],
        [False, False]],
  fill_value=999999)]

 

Code #2 :

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program explaining
# numpy.MaskedArray.atleast_3d() method 
     
# importing numpy as geek  
# and numpy.ma module as ma 
import numpy as geek 
import numpy.ma as ma 
     
# creating input array 
in_arr = geek.array([[[ 2e8, 3e-5]], [[ -45.0, 2e5]]])
print ("Input array : ", in_arr)
      
# Now we are creating a masked array. 
# by making one entry as invalid.  
mask_arr = ma.masked_array(in_arr, mask =[[[ 1, 0]], [[ 0, 0]]]) 
print ("3D Masked array : ", mask_arr) 
     
# applying MaskedArray.atleast_3d methods 
# to masked array
out_arr = ma.atleast_3d(mask_arr) 
print ("Output masked array : ", out_arr)

chevron_right


Output:

Input array :  [[[ 2.0e+08  3.0e-05]]

 [[-4.5e+01  2.0e+05]]]
3D Masked array :  [[[-- 3e-05]]

 [[-45.0 200000.0]]]
Output masked array :  [[[-- 3e-05]]

 [[-45.0 200000.0]]]

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.




My Personal Notes arrow_drop_up
Recommended Articles
Page :