# Numpy MaskedArray.atleast_2d() function | Python

• Last Updated : 13 Oct, 2019

`numpy.MaskedArray.atleast_2d()` function is used to convert inputs to masked arrays with at least two dimension.Scalar and 1-dimensional arrays are converted to 2-dimensional arrays, whilst higher-dimensional inputs are preserved.

Syntax : `numpy.ma.atleast_2d(*arys)`

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course

Parameters:
arys:[ array_like] One or more input arrays.

Return : [ ndarray] An array, or list of arrays, each with `arr.ndim >= 2`

Code #1 :

 `# Python program explaining``# numpy.MaskedArray.atleast_2d() method ``   ` `# importing numpy as geek  ``# and numpy.ma module as ma ``import` `numpy as geek ``import` `numpy.ma as ma ``   ` `# creating input arrays  ``in_arr1 ``=` `geek.array([ ``3``, ``-``1``, ``5``, ``-``3``])``print` `(``"1st Input array : "``, in_arr1)`` ` `in_arr2 ``=` `geek.array(``2``)``print` `(``"2nd Input array : "``, in_arr2)``   ` `# Now we are creating  masked array. ``# by making  entry as invalid.  ``mask_arr1 ``=` `ma.masked_array(in_arr1, mask ``=``[ ``1``, ``0``, ``1``, ``0``]) ``print` `(``"1st Masked array : "``, mask_arr1)`` ` `mask_arr2 ``=` `ma.masked_array(in_arr2, mask ``=` `0``) ``print` `(``"2nd Masked array : "``, mask_arr2)``   ` `# applying MaskedArray.atleast_2d methods ``# to masked array ``out_arr ``=` `ma.atleast_2d(mask_arr1, mask_arr2) ``print` `(``"Output masked array : "``, out_arr) `
Output:
```1st Input array :  [ 3 -1  5 -3]
2nd Input array :  2
1st Masked array :  [-- -1 -- -3]
fill_value=999999)]

```

Code #2 :

 `# Python program explaining``# numpy.MaskedArray.atleast_2d() method ``    ` `# importing numpy as geek  ``# and numpy.ma module as ma ``import` `numpy as geek ``import` `numpy.ma as ma ``    ` `# creating input array ``in_arr ``=` `geek.array([[[ ``2e8``, ``3e``-``5``]], [[ ``-``45.0``, ``2e5``]]])``print` `(``"Input array : "``, in_arr)``     ` `# Now we are creating a masked array. ``# by making one entry as invalid.  ``mask_arr ``=` `ma.masked_array(in_arr, mask ``=``[[[ ``1``, ``0``]], [[ ``0``, ``0``]]]) ``print` `(``"3D Masked array : "``, mask_arr) ``    ` `# applying MaskedArray.atleast_2d methods ``# to masked array``out_arr ``=` `ma.atleast_2d(mask_arr) ``print` `(``"Output masked array : "``, out_arr)`
Output:
```Input array :  [[[ 2.0e+08  3.0e-05]]

[[-4.5e+01  2.0e+05]]]
3D Masked array :  [[[-- 3e-05]]

[[-45.0 200000.0]]]
Output masked array :  [[[-- 3e-05]]

[[-45.0 200000.0]]]
```

My Personal Notes arrow_drop_up