Numpy MaskedArray.atleast_1d() function | Python

numpy.MaskedArray.atleast_1d() function is used to convert inputs to masked arrays with at least one dimension.Scalar inputs are converted to 1-dimensional arrays, whilst higher-dimensional inputs are preserved.

Syntax : numpy.ma.atleast_1d(*arys)

Parameters:
arys:[ array_like] One or more input arrays.



Return : [ ndarray] An array, or list of arrays, each with arr.ndim >= 1

Code #1 :

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program explaining
# numpy.MaskedArray.atleast_1d() method 
    
# importing numpy as geek  
# and numpy.ma module as ma 
import numpy as geek 
import numpy.ma as ma 
    
# creating input arrays  
in_arr1 = geek.array([[1, 2], [ 3, -1], [ 5, -3]])
print ("1st Input array : ", in_arr1)
  
in_arr2 = geek.array(2)
print ("2nd Input array : ", in_arr2)
    
# Now we are creating  masked array. 
# by making  entry as invalid.  
mask_arr1 = ma.masked_array(in_arr1, mask =[[ 1, 0], [ 0, 1], [ 0, 0]]) 
print ("1st Masked array : ", mask_arr1)
  
mask_arr2 = ma.masked_array(in_arr2, mask = 0
print ("2nd Masked array : ", mask_arr2)
    
# applying MaskedArray.atleast_1d methods 
# to masked array 
out_arr = ma.atleast_1d(mask_arr1, mask_arr2) 
print ("Output masked array : ", out_arr) 

chevron_right


Output:

1st Input array :  [[ 1  2]
 [ 3 -1]
 [ 5 -3]]
2nd Input array :  2
1st Masked array :  [[-- 2]
 [3 --]
 [5 -3]]
2nd Masked array :  2
Output masked array :  [masked_array(
  data=[[--, 2],
        [3, --],
        [5, -3]],
  mask=[[ True, False],
        [False,  True],
        [False, False]],
  fill_value=999999), masked_array(data=[2],
             mask=[False],
       fill_value=999999)]

 

Code #2 :

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program explaining
# numpy.MaskedArray.atleast_1d() method 
     
# importing numpy as geek  
# and numpy.ma module as ma 
import numpy as geek 
import numpy.ma as ma 
     
# creating input array 
in_arr = geek.array([[[ 2e8, 3e-5]], [[ -45.0, 2e5]]])
print ("Input array : ", in_arr)
      
# Now we are creating a masked array. 
# by making one entry as invalid.  
mask_arr = ma.masked_array(in_arr, mask =[[[ 1, 0]], [[ 0, 0]]]) 
print ("3D Masked array : ", mask_arr) 
     
# applying MaskedArray.atleast_1d methods 
# to masked array
out_arr = ma.atleast_1d(mask_arr) 
print ("Output masked array : ", out_arr)

chevron_right


Output:

Input array :  [[[ 2.0e+08  3.0e-05]]

 [[-4.5e+01  2.0e+05]]]
3D Masked array :  [[[-- 3e-05]]

 [[-45.0 200000.0]]]
Output masked array :  [[[-- 3e-05]]

 [[-45.0 200000.0]]]


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.