Skip to content
Related Articles

Related Articles

Numpy MaskedArray.atleast_1d() function | Python
  • Last Updated : 13 Oct, 2019

numpy.MaskedArray.atleast_1d() function is used to convert inputs to masked arrays with at least one dimension.Scalar inputs are converted to 1-dimensional arrays, whilst higher-dimensional inputs are preserved.

Syntax : numpy.ma.atleast_1d(*arys)

Parameters:
arys:[ array_like] One or more input arrays.

Return : [ ndarray] An array, or list of arrays, each with arr.ndim >= 1

Code #1 :






# Python program explaining
# numpy.MaskedArray.atleast_1d() method 
    
# importing numpy as geek  
# and numpy.ma module as ma 
import numpy as geek 
import numpy.ma as ma 
    
# creating input arrays  
in_arr1 = geek.array([[1, 2], [ 3, -1], [ 5, -3]])
print ("1st Input array : ", in_arr1)
  
in_arr2 = geek.array(2)
print ("2nd Input array : ", in_arr2)
    
# Now we are creating  masked array. 
# by making  entry as invalid.  
mask_arr1 = ma.masked_array(in_arr1, mask =[[ 1, 0], [ 0, 1], [ 0, 0]]) 
print ("1st Masked array : ", mask_arr1)
  
mask_arr2 = ma.masked_array(in_arr2, mask = 0
print ("2nd Masked array : ", mask_arr2)
    
# applying MaskedArray.atleast_1d methods 
# to masked array 
out_arr = ma.atleast_1d(mask_arr1, mask_arr2) 
print ("Output masked array : ", out_arr) 
Output:
1st Input array :  [[ 1  2]
 [ 3 -1]
 [ 5 -3]]
2nd Input array :  2
1st Masked array :  [[-- 2]
 [3 --]
 [5 -3]]
2nd Masked array :  2
Output masked array :  [masked_array(
  data=[[--, 2],
        [3, --],
        [5, -3]],
  mask=[[ True, False],
        [False,  True],
        [False, False]],
  fill_value=999999), masked_array(data=[2],
             mask=[False],
       fill_value=999999)]

 

Code #2 :




# Python program explaining
# numpy.MaskedArray.atleast_1d() method 
     
# importing numpy as geek  
# and numpy.ma module as ma 
import numpy as geek 
import numpy.ma as ma 
     
# creating input array 
in_arr = geek.array([[[ 2e8, 3e-5]], [[ -45.0, 2e5]]])
print ("Input array : ", in_arr)
      
# Now we are creating a masked array. 
# by making one entry as invalid.  
mask_arr = ma.masked_array(in_arr, mask =[[[ 1, 0]], [[ 0, 0]]]) 
print ("3D Masked array : ", mask_arr) 
     
# applying MaskedArray.atleast_1d methods 
# to masked array
out_arr = ma.atleast_1d(mask_arr) 
print ("Output masked array : ", out_arr)
Output:
Input array :  [[[ 2.0e+08  3.0e-05]]

 [[-4.5e+01  2.0e+05]]]
3D Masked array :  [[[-- 3e-05]]

 [[-45.0 200000.0]]]
Output masked array :  [[[-- 3e-05]]

 [[-45.0 200000.0]]]

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up
Recommended Articles
Page :