Skip to content
Related Articles

Related Articles

Improve Article

numpy.ma.notmasked_edges() function | Python

  • Last Updated : 22 Apr, 2020
Geek Week

numpy.ma.notmasked_edges() function find the indices of the first and last unmasked values along an axis.
Return None, if all values are masked. Otherwise, return a list of two tuples, corresponding to the indices of the first and last unmasked values respectively.

Syntax : numpy.ma.notmasked_edges(arr, axis = None)

Parameters :
arr : [array_like] The input array.
axis : [int, optional] Axis along which to perform the operation. Default is None.

Return : [ ndarray or list] An array of start and end indexes if there are any masked data in the array. If there are no masked data in the array, edges is a list of the first and last index.

Code #1 :






# Python program explaining
# numpy.ma.notmasked_edges() function
  
# importing numpy as geek  
# and numpy.ma module as ma 
import numpy as geek 
import numpy.ma as ma 
  
arr = geek.arange(12).reshape((3, 4))
  
gfg = geek.ma.notmasked_edges(arr)
  
print (gfg)

Output :

[ 0, 11]

 
Code #2 :




# Python program explaining
# numpy.ma.notmasked_edges() function
  
# importing numpy as geek  
# and numpy.ma module as ma 
import numpy as geek 
import numpy.ma as ma 
  
arr = geek.arange(12).reshape((3, 4))
m = geek.zeros_like(arr)
m[1:, 1:] = 1
  
am = geek.ma.array(arr, mask = m)
  
gfg = geek.ma.notmasked_edges(am)
  
print (gfg)

Output :

[0, 8]

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :