Skip to content
Related Articles

Related Articles

Improve Article

numpy.ma.mask_rowcols() function | Python

  • Last Updated : 22 Apr, 2020

In this numpy.ma.mask_rowcols() function, mask rows and/or columns of a 2D array that contain masked values. The masking behavior is selected using the axis parameter.
If axis is None, rows and columns are masked.
If axis is 0, only rows are masked.
If axis is 1 or -1, only columns are masked.

Syntax : numpy.ma.mask_rowcols(arr, axis = None)
Parameters :
arr : [array_like, MaskedArray] The array to mask. The result is a MaskedArray with mask set to nomask (False). Must be a 2D array.
axis : [int, optional] Axis along which to perform the operation. Default is None.

Return : [MaskedArray] A modified version of the input array, masked depending on the value of the axis parameter.

Code #1 :




# Python program explaining
# numpy.ma.mask_rowcols() function
  
# importing numpy as geek  
# and numpy.ma module as ma 
import numpy as geek 
import numpy.ma as ma 
  
arr = geek.zeros((4, 4), dtype = int)
arr[2, 2] = 1
   
arr = ma.masked_equal(arr, 1)
  
gfg = ma.mask_rowcols(arr)
  
print (gfg)

Output :



[[0 0 -- 0]
 [0 0 -- 0]
 [-- -- -- --]
 [0 0 -- 0]]

 
Code #2 :




# Python program explaining
# numpy.ma.mask_rowcols() function
  
# importing numpy as geek  
# and numpy.ma module as ma 
import numpy as geek 
import numpy.ma as ma 
  
arr = geek.zeros((5, 5), dtype = int)
arr[3, 3] = 1
   
arr = ma.masked_equal(arr, 1)
  
gfg = ma.mask_rowcols(arr)
  
print (gfg)

Output :

[[0 0 0 -- 0]
 [0 0 0 -- 0]
 [0 0 0 -- 0]
 [-- -- -- -- --]
 [0 0 0 -- 0]]

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :