Skip to content
Related Articles

Related Articles

Improve Article

numpy.ma.mask_or() function | Python

  • Last Updated : 22 Apr, 2020

numpy.ma.mask_or() function combine two masks with the logical_or operator. The result may be a view on m1 or m2 if the other is nomask (i.e. False).

Syntax : numpy.ma.mask_or(m1, m2, copy = False, shrink = True)

Parameters :
m1, m2 : [ array_like] Input masks.
copy : [bool, optional] If copy is False and one of the inputs is nomask, return a view of the other input mask. Defaults to False
shrink : [bool, optional] Whether to shrink the output to nomask if all its values are False. Defaults to True.

Return : The result masks values that are masked in either m1 or m2.

Code #1 :






# Python program explaining
# numpy.ma.mask_or() function
  
# importing numpy as geek  
# and numpy.ma module as ma 
import numpy as geek 
import numpy.ma as ma 
  
m1 = geek.ma.make_mask([1, 1, 0, 1])
m2 = geek.ma.make_mask([1, 0, 0, 0])
  
gfg = geek.ma.mask_or(m1, m2)
  
print (gfg)

Output :

[ True  True False  True]

 
Code #2 :




# Python program explaining
# numpy.ma.mask_or() function
  
# importing numpy as geek  
# and numpy.ma module as ma 
import numpy as geek 
import numpy.ma as ma 
  
m1 = geek.ma.make_mask([1, 0, 0, 0])
m2 = geek.ma.make_mask([1, 1, 0, 1])
  
gfg = geek.ma.mask_or(m1, m2)
  
print (gfg)

Output :

[ True  True False  True]

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :