Skip to content
Related Articles

Related Articles

Improve Article

numpy.ma.mask_cols() function | Python

  • Last Updated : 22 Apr, 2020

In thisnumpy.ma.mask_cols() function, mask columns of a 2D array that contain masked values. This function is a shortcut to mask_rowcols with axis equal to 1.

Syntax : numpy.ma.mask_cols(arr, axis = None)

Parameters :
arr : [array_like, MaskedArray] The array to mask.
axis : [int, optional] Axis along which to perform the operation. Default is None.

Return : [MaskedArray] A modified version of the input array.

Code #1 :






# Python program explaining
# numpy.ma.mask_cols() function
  
# importing numpy as geek  
# and numpy.ma module as ma 
import numpy as geek 
import numpy.ma as ma 
  
arr = geek.zeros((3, 3), dtype = int)
arr[1, 1] = 1
   
arr = ma.masked_equal(arr, 1)
  
gfg = ma.mask_cols(arr)
  
print (gfg)

Output :

[[0 -- 0]
 [0 -- 0]
 [0 -- 0]]

 
Code #2 :




# Python program explaining
# numpy.ma.mask_cols() function
  
# importing numpy as geek  
# and numpy.ma module as ma 
import numpy as geek 
import numpy.ma as ma 
  
arr = geek.zeros((4, 4), dtype = int)
arr[2, 2] = 1
   
arr = ma.masked_equal(arr, 1)
  
gfg = ma.mask_cols(arr)
  
print (gfg)

Output :

[[0 0 -- 0]
 [0 0 -- 0]
 [0 0 -- 0]
 [0 0 -- 0]]

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :