# numpy.ma.append() function | Python

** numpy.ma.append()** function append the values to the end of an array.

Syntax :numpy.ma.append(arr1, arr2, axis = None)Parameters :arr1 :[array_like] Values are appended to a copy of this array.arr2 :[array_like] Values are appended to a copy of this array. If axis is not specified, arr2 can be any shape and will be flattened before use. Otherwise, it must be of the correct shape.axis :[int, optional] The axis along which value are appended.Return :[MaskedArray] A copy of arr1 with arr2 appended to axis. If axis is None, the result is a flattened array.

**Code #1 :**

`# Python program explaining` `# numpy.ma.append() function` ` ` `# importing numpy as geek ` `# and numpy.ma module as ma ` `import` `numpy as geek ` `import` `numpy.ma as ma ` ` ` `arr1 ` `=` `ma.masked_values([` `1` `, ` `2` `, ` `3` `], ` `3` `)` `arr2 ` `=` `ma.masked_values([[` `4` `, ` `5` `, ` `6` `], [` `7` `, ` `8` `, ` `9` `]], ` `8` `)` ` ` `gfg ` `=` `ma.append(arr1, arr2)` ` ` `print` `(gfg)` |

**Output :**

[1 2 -- 4 5 6 7 -- 9]

**Code #2 :**

`# Python program explaining` `# numpy.ma.append() function` ` ` `# importing numpy as geek ` `# and numpy.ma module as ma ` `import` `numpy as geek ` `import` `numpy.ma as ma ` ` ` `arr1 ` `=` `ma.masked_values([` `1` `, ` `2` `, ` `3` `, ` `4` `], ` `2` `)` `arr2 ` `=` `ma.masked_values([[` `5` `, ` `6` `, ` `7` `], [` `8` `, ` `9` `, ` `10` `]], ` `8` `)` ` ` `gfg ` `=` `ma.append(arr1, arr2)` ` ` `print` `(gfg)` |

**Output :**

[1 -- 3 4 5 6 7 -- 9 10]

Attention geek! Strengthen your foundations with the **Python Programming Foundation** Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the **Python DS** Course. And to begin with your Machine Learning Journey, join the **Machine Learning – Basic Level Course**