# numpy.logical_xor() in Python

• Last Updated : 29 Nov, 2018

numpy.logical_xor(arr1, arr2, out=None, where = True, casting = ‘same_kind’, order = ‘K’, dtype = None, ufunc ‘logical_xor’) : This is a logical function and it helps user to find out the truth value of arr1 XOR arr2 element-wise. Both the arrays must be of same shape.

Parameters :

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course

arr1 : [array_like]Input array.
arr2 : [array_like]Input array.

out : [ndarray, optional]Output array with same dimensions as Input array, placed with result.

**kwargs : allows you to pass keyword variable length of argument to a function. It is used when we want to handle named argument in a function.

where : [array_like, optional]True value means to calculate the universal functions(ufunc) at that position, False value means to leave the value in the output alone.

Return :

```An array with Boolean results of arr1 XOR arr2 element-wise(of the same shape).
```

Code 1 : Working

 `# Python program explaining``# logical_xor() function``import` `numpy as np`` ` `# input``arr1 ``=` `[``1``, ``3``, ``False``, ``0``]``arr2 ``=` `[``3``, ``0``, ``True``, ``False``]`` ` `# output``out_arr ``=` `np.logical_xor(arr1, arr2)`` ` `print` `(``"Output Array : "``, out_arr)`

Output :

```Output Array :  [False  True  True False]
```

Code 2 : Value Error if input array’s have different shapes

 `# Python program explaining``# logical_xor() function``import` `numpy as np`` ` `# input``arr1 ``=` `[``8``, ``2``, ``False``, ``4``]``arr2 ``=` `[``3``, ``0``, ``False``, ``False``, ``8``]`` ` `# output``out_arr ``=` `np.logical_xor(arr1, arr2)`` ` `print` `(``"Output Array : "``, out_arr)`

Output :

`ValueError: operands could not be broadcast together with shapes (4,) (5,)  `

Code 3 : Can check condition

 `# Python program explaining``# logical_xor() function``import` `numpy as np`` ` `# input``arr1 ``=` `np.arange(``8``)``print` `(``"arr1 : "``, arr1)`` ` `print` `(``"\narr1>3 : \n"``, arr1>``3``)``print` `(``"\narr1<6 : \n"``, arr1<``6``)`` ` `print` `(``"\nXOR Value  : \n"``, np.logical_xor(arr1>``3``, arr1<``6``))`

Output :

```arr1 :  [0 1 2 3 4 5 6 7]

arr1>3 :
[False False False False  True  True  True  True]

arr1<6 :
[ True  True  True  True  True  True False False]

XOR Value  :
[ True  True  True  True False False  True  True]```

My Personal Notes arrow_drop_up