Skip to content
Related Articles

Related Articles

numpy.log10() in Python
  • Last Updated : 29 Nov, 2018

About :
numpy.log10(arr, out = None, *, where = True, casting = ‘same_kind’, order = ‘K’, dtype = None, ufunc ‘log10’) : This mathematical function helps user to calculate Base-10 logarithm of x where x belongs to all the input array elements.

Parameters :

array    : [array_like]Input array or object.
out      : [ndarray, optional]Output array with same dimensions as Input array, 
         placed with result.
**kwargs : allows you to pass keyword variable length of argument to a function. 
         It is used when we want to handle named argument in a function.
where    : [array_like, optional]True value means to calculate the universal 
         functions(ufunc) at that position, False value means to leave the value in the 
         output alone.

Return :

An array with Base-10 logarithmic value of x; 
where x belongs to all elements of input array. 

Code 1 : Working




# Python program explaining
# log10() function
  
import numpy as np
  
in_array = [1, 3, 5, 10**8]
print ("Input array : ", in_array)
  
out_array = np.log10(in_array)
print ("Output array : ", out_array)
  
  
print("\nnp.log10(4**4) : ", np.log10(100**4))
print("np.log10(2**8) : ", np.log10(10**8))


Output :



Input array :  [1, 3, 5, 100000000]
Output array :  [ 0.          0.47712125  0.69897     8.        ]

np.log10(4**4) :  8.0
np.log10(2**8) :  8.0

Code 2 : Graphical representation




# Python program showing
# Graphical representation of 
# log10() function
  
import numpy as np
import matplotlib.pyplot as plt
  
in_array = [1, 2, 3, 4, 5]
out_array = np.log10(in_array)
  
print ("out_array : ", out_array)
  
plt.plot(in_array, in_array, color = 'blue', marker = "*")
  
# red for numpy.log10()
plt.plot(out_array, in_array, color = 'red', marker = "o")
plt.title("numpy.log10()")
plt.xlabel("out_array")
plt.ylabel("in_array")
plt.show()  


Output :

out_array :  [ 0.          0.30103     0.47712125  0.60205999  0.69897   ]


References :
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.log10.html#numpy.log10
.

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :