The numpy.log() is a mathematical function that helps user to calculate Natural logarithm of x where x belongs to all the input array elements.
Natural logarithm log is the inverse of the exp(), so that log(exp(x)) = x. The natural logarithm is log in base e.
Syntax :numpy.log(x[, out] = ufunc ‘log1p’)
Parameters :array : [array_like] Input array or object.
out : [ndarray, optional] Output array with same dimensions as Input array, placed with result.Return :
An array with Natural logarithmic value of x; where x belongs to all elements of input array.
Code #1 : Working
# Python program explaining # log() function import numpy as np in_array = [ 1 , 3 , 5 , 2 * * 8 ] print ( "Input array : " , in_array) out_array = np.log(in_array) print ( "Output array : " , out_array) print ( "\nnp.log(4**4) : " , np.log( 4 * * 4 )) print ( "np.log(2**8) : " , np.log( 2 * * 8 )) |
Output :
Input array : [1, 3, 5, 256] Output array : [ 0. 1.09861229 1.60943791 5.54517744] np.log(4**4) : 5.54517744448 np.log(2**8) : 5.54517744448
Code #2 : Graphical representation
# Python program showing # Graphical representation # of log() function import numpy as np import matplotlib.pyplot as plt in_array = [ 1 , 1.2 , 1.4 , 1.6 , 1.8 , 2 ] out_array = np.log(in_array) print ( "out_array : " , out_array) plt.plot(in_array, in_array, color = 'blue' , marker = "*" ) # red for numpy.log() plt.plot(out_array, in_array, color = 'red' , marker = "o" ) plt.title( "numpy.log()" ) plt.xlabel( "out_array" ) plt.ylabel( "in_array" ) plt.show() |
Output :
out_array : [ 0. 0.18232156 0.33647224 0.47000363 0.58778666 0.69314718]
References : https://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.log.html#numpy.log
.
Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.
To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.