numpy.log() in Python

numpy.log(x[, out] = ufunc ‘log1p’) : This mathematical function helps user to calculate Natural logarithm of x where x belongs to all the input array elements.
Natural logarithm log is the inverse of the exp(), so that log(exp(x)) = x. The natural logarithm is log in base e.

Parameters :

array : [array_like] Input array or object.
out : [ndarray, optional] Output array with same dimensions as Input array, placed with result.

Return :
An array with Natural logarithmic value of x; where x belongs to all elements of input array.

Code #1 : Working

 # Python program explaining # log() function import numpy as np    in_array = [1, 3, 5, 2**8] print ("Input array : ", in_array)    out_array = np.log(in_array) print ("Output array : ", out_array)       print("\nnp.log(4**4) : ", np.log(4**4)) print("np.log(2**8) : ", np.log(2**8))

Output :

Input array :  [1, 3, 5, 256]
Output array :  [ 0.          1.09861229  1.60943791  5.54517744]

np.log(4**4) :  5.54517744448
np.log(2**8) :  5.54517744448

Code #2 : Graphical representation

 # Python program showing # Graphical representation   # of log() function import numpy as np import matplotlib.pyplot as plt    in_array = [1, 1.2, 1.4, 1.6, 1.8, 2] out_array = np.log(in_array)    print ("out_array : ", out_array)    plt.plot(in_array, in_array,           color = 'blue', marker = "*")    # red for numpy.log() plt.plot(out_array, in_array,           color = 'red', marker = "o")             plt.title("numpy.log()") plt.xlabel("out_array") plt.ylabel("in_array") plt.show()

Output :

out_array :  [ 0.          0.18232156  0.33647224  0.47000363  0.58778666  0.69314718] References : https://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.log.html#numpy.log
.

My Personal Notes arrow_drop_up Aspire to Inspire before I expire

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.