numpy.float_power() in Python

numpy.float_power(arr1, arr2, out = None, where = True, casting = ‘same_kind’, order = ‘K’, dtype = None) :
Array element from first array is raised to the power of element from second element(all happens element-wise). Both arr1 and arr2 must have same shape.
float_power differs from the power function in that integers, float16, and float32 are promoted to floats with a minimum precision of float64 such that result is always inexact. This function will return a usable result for negative powers and seldom overflow for +ve powers.

Parameters :

arr1     : [array_like]Input array or object which works as base.
arr2     : [array_like]Input array or object which works as exponent.
out      : [ndarray, optional]Output array with same dimensions as Input array,
placed with result.
**kwargs : Allows you to pass keyword variable length of argument to a function.
It is used when we want to handle named argument in a function.
where    : [array_like, optional]True value means to calculate the universal
functions(ufunc) at that position, False value means to leave the
value in the output alone.

Return :

An array with elements of arr1 raised to exponents in arr2

Code 1 : arr1 raised to arr2

 # Python program explaining # float_power() function import numpy as np    # input_array arr1 = [2, 2, 2, 2, 2] arr2 = [2, 3, 4, 5, 6] print ("arr1         : ", arr1) print ("arr1         : ", arr2)    # output_array out = np.float_power(arr1, arr2) print ("\nOutput array : ", out)

Output :

arr1         :  [2, 2, 2, 2, 2]
arr1         :  [2, 3, 4, 5, 6]

Output array :  [  4.   8.  16.  32.  64.]

Code 2 : elements of arr1 raised to exponent 2

 # Python program explaining # float_power() function import numpy as np    # input_array arr1 = np.arange(8) exponent = 2 print ("arr1         : ", arr1)    # output_array out = np.float_power(arr1, exponent) print ("\nOutput array : ", out)

Output :

arr1         :  [0 1 2 3 4 5 6 7]

Output array :  [  0.   1.   4.   9.  16.  25.  36.  49.]

Code 3 : float_power handling results if arr2 has -ve elements

 # Python program explaining # float_power() function import numpy as np    # input_array arr1 = [2, 2, 2, 2, 2] arr2 = [2, -3, 4, -5, 6] print ("arr1         : ", arr1) print ("arr2         : ", arr2)    # output_array out = np.float_power(arr1, arr2) print ("\nOutput array : ", out)

Output :

arr1         :  [2, 2, 2, 2, 2]
arr2         :  [2, -3, 4, -5, 6]

Output array :  [  4.00000000e+00   1.25000000e-01   1.60000000e+01
3.12500000e-02   6.40000000e+01]

My Personal Notes arrow_drop_up Aspire to Inspire before I expire

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.