Skip to content
Related Articles

Related Articles

numpy.float_power() in Python
  • Last Updated : 29 Nov, 2018

numpy.float_power(arr1, arr2, out = None, where = True, casting = ‘same_kind’, order = ‘K’, dtype = None) :
Array element from first array is raised to the power of element from second element(all happens element-wise). Both arr1 and arr2 must have same shape.
float_power differs from the power function in that integers, float16, and float32 are promoted to floats with a minimum precision of float64 such that result is always inexact. This function will return a usable result for negative powers and seldom overflow for +ve powers.

Parameters :

arr1     : [array_like]Input array or object which works as base.
arr2     : [array_like]Input array or object which works as exponent. 
out      : [ndarray, optional]Output array with same dimensions as Input array, 
            placed with result.
**kwargs : Allows you to pass keyword variable length of argument to a function. 
           It is used when we want to handle named argument in a function.
where    : [array_like, optional]True value means to calculate the universal 
           functions(ufunc) at that position, False value means to leave the 
           value in the output alone.

Return :

An array with elements of arr1 raised to exponents in arr2

 
Code 1 : arr1 raised to arr2




# Python program explaining
# float_power() function
import numpy as np
  
# input_array
arr1 = [2, 2, 2, 2, 2]
arr2 = [2, 3, 4, 5, 6]
print ("arr1         : ", arr1)
print ("arr1         : ", arr2)
  
# output_array
out = np.float_power(arr1, arr2)
print ("\nOutput array : ", out)


Output :



arr1         :  [2, 2, 2, 2, 2]
arr1         :  [2, 3, 4, 5, 6]

Output array :  [  4.   8.  16.  32.  64.]

 
Code 2 : elements of arr1 raised to exponent 2




# Python program explaining
# float_power() function
import numpy as np
  
# input_array
arr1 = np.arange(8)
exponent = 2
print ("arr1         : ", arr1)
  
# output_array
out = np.float_power(arr1, exponent)
print ("\nOutput array : ", out)


Output :

arr1         :  [0 1 2 3 4 5 6 7]

Output array :  [  0.   1.   4.   9.  16.  25.  36.  49.]

 
Code 3 : float_power handling results if arr2 has -ve elements




# Python program explaining
# float_power() function
import numpy as np
  
# input_array
arr1 = [2, 2, 2, 2, 2]
arr2 = [2, -3, 4, -5, 6]
print ("arr1         : ", arr1)
print ("arr2         : ", arr2)
  
# output_array
out = np.float_power(arr1, arr2)
print ("\nOutput array : ", out)


Output :

arr1         :  [2, 2, 2, 2, 2]
arr2         :  [2, -3, 4, -5, 6]

Output array :  [  4.00000000e+00   1.25000000e-01   1.60000000e+01   
                3.12500000e-02   6.40000000e+01]

References :
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.float_power.html#numpy.float_power
.

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :