numpy.expm1() in Python

numpy.expm1(array, out = None, where = True, casting = ‘same_kind’, order = ‘K’, dtype = None) :
This mathematical function helps user to calculate exponential of all the elements subtracting 1 from all the input array elements.

Parameters :

array    : [array_like]Input array or object whose elements, we need to test.
out      : [ndarray, optional]Output array with same dimensions as Input array, 
           placed with result.
**kwargs : allows you to pass keyword variable length of argument to a function. 
           It is used when we want to handle named argument in a function.
where    : [array_like, optional]True value means to calculate the universal 
           functions(ufunc) at that position, False value means to leave the 
           value in the output alone.

Return :



An array with exponential(all elements of input array) - 1. 

Code 1 : Working

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program explaining
# expm1() function
  
import numpy as np
  
in_array = [1, 3, 5]
print ("Input array : \n", in_array)
  
exp_values = np.exp(in_array)
print ("\nExponential value of array element : "
       "\n", exp_values)
  
expm1_values = np.expm1(in_array)
print ("\n(Exponential value of array element) - (1) "
       ": \n", expm1_values)

chevron_right


Output :

Input array : 
 [1, 3, 5]

Exponential value of array element : 
 [   2.71828183   20.08553692  148.4131591 ]

(Exponential value of array element) - (1) : 
 [   1.71828183   19.08553692  147.4131591 ]

 
Code 2 : Graphical representation

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program showing
# Graphical representation of 
# expm1() function
  
import numpy as np
import matplotlib.pyplot as plt
  
in_array = [1, 1.2, 1.4, 1.6, 1.8, 2]
out_array = np.expm1(in_array)
  
print("out_array : ", out_array)
  
y = [1, 1.2, 1.4, 1.6, 1.8, 2]
plt.plot(in_array, y, color = 'blue', marker = "*")
  
# red for numpy.expm1()
plt.plot(out_array, y, color = 'red', marker = "o")
plt.title("numpy.expm1()")
plt.xlabel("X")
plt.ylabel("Y")
plt.show()  

chevron_right


Output :
out_array : [ 1.71828183 2.32011692 3.05519997 3.95303242 5.04964746 6.3890561 ]

References :
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.expm1.html#numpy.expm1
.



My Personal Notes arrow_drop_up

Aspire to Inspire before I expire

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.