Skip to content
Related Articles

Related Articles

Improve Article

numpy.expm1() in Python

  • Last Updated : 29 Nov, 2018
Geek Week

numpy.expm1(array, out = None, where = True, casting = ‘same_kind’, order = ‘K’, dtype = None) :
This mathematical function helps user to calculate exponential of all the elements subtracting 1 from all the input array elements.

Parameters :

array    : [array_like]Input array or object whose elements, we need to test.
out      : [ndarray, optional]Output array with same dimensions as Input array, 
           placed with result.
**kwargs : allows you to pass keyword variable length of argument to a function. 
           It is used when we want to handle named argument in a function.
where    : [array_like, optional]True value means to calculate the universal 
           functions(ufunc) at that position, False value means to leave the 
           value in the output alone.

Return :

An array with exponential(all elements of input array) - 1. 

Code 1 : Working




# Python program explaining
# expm1() function
  
import numpy as np
  
in_array = [1, 3, 5]
print ("Input array : \n", in_array)
  
exp_values = np.exp(in_array)
print ("\nExponential value of array element : "
       "\n", exp_values)
  
expm1_values = np.expm1(in_array)
print ("\n(Exponential value of array element) - (1) "
       ": \n", expm1_values)

Output :



Input array : 
 [1, 3, 5]

Exponential value of array element : 
 [   2.71828183   20.08553692  148.4131591 ]

(Exponential value of array element) - (1) : 
 [   1.71828183   19.08553692  147.4131591 ]

 
Code 2 : Graphical representation




# Python program showing
# Graphical representation of 
# expm1() function
  
import numpy as np
import matplotlib.pyplot as plt
  
in_array = [1, 1.2, 1.4, 1.6, 1.8, 2]
out_array = np.expm1(in_array)
  
print("out_array : ", out_array)
  
y = [1, 1.2, 1.4, 1.6, 1.8, 2]
plt.plot(in_array, y, color = 'blue', marker = "*")
  
# red for numpy.expm1()
plt.plot(out_array, y, color = 'red', marker = "o")
plt.title("numpy.expm1()")
plt.xlabel("X")
plt.ylabel("Y")
plt.show()  

Output :
out_array : [ 1.71828183 2.32011692 3.05519997 3.95303242 5.04964746 6.3890561 ]

References :
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.expm1.html#numpy.expm1
.

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :