Skip to content
Related Articles

Related Articles

numpy.cosh() in Python
  • Last Updated : 04 Dec, 2020

The numpy.cosh() is a mathematical function that helps user to calculate hyperbolic cosine for all x(being the array elements).

Equivalent to 1/2 * (np.exp(x) - np.exp(-x)) and np.cos(1j*x).

Syntax : numpy.cosh(x[, out]) = ufunc ‘cos’)
Parameters :

array : [array_like] elements are in radians.
2pi Radians = 36o degrees

Return : An array with hyperbolic cosine of x for all x i.e. array elements



 
Code #1 : Working




# Python3 program explaining
# cosh() function
  
import numpy as np
import math
  
in_array = [0, math.pi / 2, np.pi / 3, np.pi]
print ("Input array : \n", in_array)
  
cosh_Values = np.cosh(in_array)
print ("\ncosine Hyperbolic values : \n", cosh_Values)

Output :

Input array : 
 [0, 1.5707963267948966, 1.0471975511965976, 3.141592653589793]

cosine Hyperbolic values : 
 [  1.           2.50917848   1.60028686  11.59195328]

 
Code #2 : Graphical representation




# Python program showing Graphical
# representation of cosh() function
import numpy as np
import matplotlib.pyplot as plt
  
in_array = np.linspace(-np.pi, np.pi, 12)
out_array = np.cosh(in_array)
  
print("in_array : ", in_array)
print("\nout_array : ", out_array)
  
# red for numpy.cosh()
plt.plot(in_array, out_array, color = 'red', marker = "o")
plt.title("numpy.cosh()")
plt.xlabel("X")
plt.ylabel("Y")
plt.show()

Output :

in_array :  [-3.14159265 -2.57039399 -1.99919533 -1.42799666 -0.856798   -0.28559933
  0.28559933  0.856798    1.42799666  1.99919533  2.57039399  3.14159265]

out_array :  [ 11.59195328   6.57373932   3.75927846   2.20506252   1.39006258
   1.04106146   1.04106146   1.39006258   2.20506252   3.75927846
   6.57373932  11.59195328]


 
References : https://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.cosh.html#numpy.cosh
.

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :