Skip to content
Related Articles

Related Articles

numpy.cos() in Python
  • Last Updated : 09 Feb, 2021

numpy.cos(x[, out]) = ufunc ‘cos’) : This mathematical function helps user to calculate trigonometric cosine for all x(being the array elements). 
Parameters : 
 

array  : [array_like]elements are in radians. 

 

2pi Radians = 360 degrees

Return : 
 

An array with trigonometric cosine 
of x for all x i.e. array elements 

  
Code #1 : Working 
 

Python




# Python program explaining
# cos() function
 
import numpy as np
import math
 
in_array = [0, math.pi / 2, np.pi / 3, np.pi]
print ("Input array : \n", in_array)
 
cos_Values = np.cos(in_array)
print ("\nCosine values : \n", cos_Values)

Output : 
 



Input array : 
 [0, 1.5707963267948966, 1.0471975511965976, 3.141592653589793]

Cosine values : 
 [  1.00000000e+00   6.12323400e-17   5.00000000e-01  -1.00000000e+00]

  
Code #2 : Graphical representation 
 

Python




# Python program showing
# Graphical representation of
# cos() function
 
import numpy as np
import matplotlib.pyplot as plt
 
in_array = np.linspace(-(2*np.pi), 2*np.pi, 20)
out_array = np.cos(in_array)
 
print("in_array : ", in_array)
print("\nout_array : ", out_array)
 
# red for numpy.cos()
plt.plot(in_array, out_array, color = 'red', marker = "o")
plt.title("numpy.cos()")
plt.xlabel("X")
plt.ylabel("Y")
plt.show()

Output : 
 

in_array :  [-6.28318531 -5.62179738 -4.96040945 -4.29902153 -3.6376336  -2.97624567
 -2.31485774 -1.65346982 -0.99208189 -0.33069396  0.33069396  0.99208189
  1.65346982  2.31485774  2.97624567  3.6376336   4.29902153  4.96040945
  5.62179738  6.28318531]

out_array :  [ 1.          0.78914051  0.24548549 -0.40169542 -0.87947375 -0.9863613
 -0.67728157 -0.08257935  0.54694816  0.94581724  0.94581724  0.54694816
 -0.08257935 -0.67728157 -0.9863613  -0.87947375 -0.40169542  0.24548549
  0.78914051  1.        ]

 

References : 
https://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.cos.html#numpy.cos 
.
 

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up
Recommended Articles
Page :