numpy.arcsinh() in Python

numpy.arcsinh() : This mathematical function helps user to calculate inverse hyperbolic sine, element-wise for all arr.

Syntax : numpy.arcsinh(arr, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, ufunc ‘arcsinh’)
Parameters :

arr : array_like
Input array.
out : [ndarray, optional] A location into which the result is stored.
  -> If provided, it must have a shape that the inputs broadcast to.
  -> If not provided or None, a freshly-allocated array is returned.
where : array_like, optional
Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone.
**kwargs :Allows to pass keyword variable length of argument to a function. Used when we want to handle named argument in a function.

Return : An array with inverse hyperbolic sine of arr
for all arr i.e. array elements.

Note :



2pi Radians = 360 degrees
The convention is to return the angle of arr whose imaginary part lies in [-pi/2, pi/2].

 
Code #1 : Working

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program explaining
# arcsinh() function
  
import numpy as np
  
in_array = [2, 1, 10, 100]
print ("Input array : \n", in_array)
  
arcsinh_Values = np.arcsinh(in_array)
print ("\nInverse hyperbolic sine values of input array : \n", arcsinh_Values)

chevron_right


Output :

Input array : 
 [2, 1, 10, 100]

Inverse hyperbolic sine values of input array : 
 [ 1.44363548  0.88137359  2.99822295  5.29834237]

Code #2 : Graphical representation

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program showing
# Graphical representation  
# of arcsinh() function % matplotlib inline 
import numpy as np
import matplotlib.pyplot as plt
in_array = np.linspace(1, np.pi, 18)
out_array1 = np.sin(in_array)
out_array2 = np.arcsinh(in_array)
   
print("in_array : ", in_array)
print("\nout_array with sin : ", out_array1)
print("\nout_array with arcsinh : ", out_array2)
# blue for numpy.sinh() 
# red for numpy.arcsinh()
plt.plot(in_array, out_array1,
            color = 'blue', marker = ".")
               
plt.plot(in_array, out_array2,
            color = 'red', marker = "+")
               
plt.title("blue : numpy.sin() \nred : numpy.arcsinh()")
plt.xlabel("X")
plt.ylabel("Y")

chevron_right


Output :


in_array :  [ 1.          1.12597604  1.25195208  1.37792812  1.50390415  1.62988019
  1.75585623  1.88183227  2.00780831  2.13378435  2.25976038  2.38573642
  2.51171246  2.6376885   2.76366454  2.88964058  3.01561662  3.14159265]

out_array with sin :  [  8.41470985e-01   9.02688009e-01   9.49598344e-01   9.81458509e-01
   9.97763553e-01   9.98255056e-01   9.82925230e-01   9.52017036e-01
   9.06020338e-01   8.45664137e-01   7.71905017e-01   6.85911986e-01
   5.89047946e-01   4.82848093e-01   3.68995589e-01   2.49294878e-01
   1.25643097e-01   1.22464680e-16]

out_array with arcsinh :  [ 0.88137359  0.96770792  1.04881189  1.12508571  1.1969269   1.26471422
  1.32879961  1.38950499  1.44712201  1.50191335  1.55411486  1.60393799
  1.65157228  1.69718777  1.74093713  1.78295772  1.82337333  1.86229574]

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.