numpy.arccos(x[, out]) = ufunc ‘arccos’) : This mathematical function helps user to calculate inverse cos for all x(being the array elements).
Parameters :
array : [array_like]elements are in radians. out : [array_like]array of same shape as x.
Note :
2pi Radians = 360 degrees
The convention is to return the angle z whose real part lies in [0, pi].
Return :
An array with inverse cosine of x for all x i.e. array elements. The values are in the closed interval [-pi/2, pi/2].
Code #1 : Working
# Python program explaining # arccos() function import numpy as np in_array = [ 0 , 1 , 0.3 , - 1 ] print ( "Input array : \n" , in_array) arccos_Values = np.arccos(in_array) print ( "\nInverse Cosine values : \n" , arccos_Values) |
Output :
Input array : [0, 1, 0.3, -1] Inverse Cosine values : [ 1.57079633 0. 1.26610367 3.14159265]
Code #2 : Graphical representation
# Python program showing # Graphical representation # of arccos() function import numpy as np import matplotlib.pyplot as plt in_array = np.linspace( - np.pi, np.pi, 12 ) out_array1 = np.cos(in_array) out_array2 = np.arccos(in_array) print ( "in_array : " , in_array) print ( "\nout_array with cos : " , out_array1) print ( "\nout_arraywith arccos : " , out_array1) # red for numpy.arccos() plt.plot(in_array, out_array1, color = 'blue' , marker = "*" ) plt.plot(in_array, out_array2, color = 'red' , marker = "o" ) plt.title( "blue : numpy.cos() \nred : numpy.arccos()" ) plt.xlabel( "X" ) plt.ylabel( "Y" ) plt.show() |
Output :
in_array : [-3.14159265 -2.57039399 -1.99919533 -1.42799666 -0.856798 -0.28559933 0.28559933 0.856798 1.42799666 1.99919533 2.57039399 3.14159265] out_array with cos : [-1. -0.84125353 -0.41541501 0.14231484 0.65486073 0.95949297 0.95949297 0.65486073 0.14231484 -0.41541501 -0.84125353 -1. ] out_arraywith arccos : [-1. -0.84125353 -0.41541501 0.14231484 0.65486073 0.95949297 0.95949297 0.65486073 0.14231484 -0.41541501 -0.84125353 -1. ] RuntimeWarning: invalid value encountered in arccos out_array1 = np.sin(in_array)
References :
https://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.arcsin.html#numpy.arccos
.
Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.
To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.