The numpy.apply_along_axis() function helps us to apply a required function to 1D slices of the given array.
1d_func(ar, *args) : works on 1-D arrays, where ar is 1D slice of arr along axis.
Syntax :
numpy.apply_along_axis(1d_func, axis, array, *args, **kwargs)
Parameters :
1d_func : the required function to perform over 1D array. It can only be applied in 1D slices of input array and that too along a particular axis. axis : required axis along which we want input array to be sliced array : Input array to work on *args : Additional arguments to 1D_function **kwargs : Additional arguments to 1D_function
What *args and **kwargs actually are ?
Both of these allow you to pass a variable no. of arguments to the function.
*args : allow to send a non-keyword variable length argument list to the function.
# Python Program illustrating # use of *args args = [ 3 , 8 ] a = list ( range ( * args)) print ( "use of args : \n " , a) |
Output :
use of args : [3, 4, 5, 6, 7]
**kwargs : allows you to pass keyword variable length of argument to a function. It is used when we want to handle named argument in a function.
# Python Program illustrating # use of **kwargs def test_args_kwargs(in1, in2, in3): print ( "in1:" , in1) print ( "in2:" , in2) print ( "in3:" , in3) kwargs = { "in3" : 1 , "in2" : "No." , "in1" : "geeks" } test_args_kwargs( * * kwargs) |
Output :
in1: geeks in2: No. in3: 1
Code 1 : Python code explaining the use of numpy.apply_along_axis().
# Python Program illustarting # apply_along_axis() in NumPy import numpy as geek # 1D_func is "geek_fun" def geek_fun(a): # Returning the sum of elements at start index and at last index # inout array return (a[ 0 ] + a[ - 1 ]) arr = geek.array([[ 1 , 2 , 3 ], [ 4 , 5 , 6 ], [ 7 , 8 , 9 ]]) ''' -> [1,2,3] <- 1 + 7 [4,5,6] 2 + 8 -> [7,8,9] <- 3 + 9 ''' print ( "axis=0 : " , geek.apply_along_axis(geek_fun, 0 , arr)) print ( "\n" ) ''' | | [1,2,3] 1 + 3 [4,5,6] 4 + 6 [7,8,9] 7 + 9 ^ ^ ''' print ( "axis=1 : " , geek.apply_along_axis(geek_fun, 1 , arr)) |
Output :
axis=0 : [ 8 10 12] axis=1 : [ 4 10 16]
Code 2 : Sorting using apply_along_axis() in NumPy Python
# Python Program illustarting # apply_along_axis() in NumPy import numpy as geek geek_array = geek.array([[ 8 , 1 , 7 ], [ 4 , 3 , 9 ], [ 5 , 2 , 6 ]]) # using pre-defined sorted function as 1D_func print ( "Sorted as per axis 1 : \n" , geek.apply_along_axis( sorted , 1 , geek_array)) print ( "\n" ) print ( "Sorted as per axis 0 : \n" , geek.apply_along_axis( sorted , 0 , geek_array)) |
Output :
Sorted as per axis 1 : [[1 7 8] [3 4 9] [2 5 6]] Sorted as per axis 0 : [[4 1 6] [5 2 7] [8 3 9]]
Note :
These NumPy-Python programs won’t run on onlineID, so run them on your systems to explore them
.
This article is contributed by Mohit Gupta_OMG π. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.
To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.