Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Numbers with a Fibonacci difference between Sum of digits at even and odd positions in a given range

  • Last Updated : 27 Apr, 2020

Prerequisites: Digit DP

Given a range [L, R], the task is to count the numbers in this range having the difference between, the sum of digits at even positions and sum of digits at odd positions, as a Fibonacci Number.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Note: Consider the position of the least significant digit in the number as an odd position.



Examples:

Input: L = 1, R = 10
Output: 1
Explanation:
The only number which satisfies the given condition is 10.

Input: L = 50, R = 100
Output: 27

Approach: The idea is to use the concept of Dynamic Programming to solve this problem. The concept of digit dp is used to form a DP table.

  • A four-dimensional table is formed and at every recursive call, we need to check whether the required difference is a Fibonacci number or not.
  • Since the highest number in the range is 1018, the maximum sum at either even or odd positions can be at max 9 times 9 and hence the maximum difference. So, we need to check only Fibonacci numbers only up to 100 at the base condition.
  • To check whether the number is Fibonacci or not, generate all the Fibonacci numbers and create a hash set.

The following are the DP states of the table:

  • Since we can consider our number as a sequence of digits, one state is the position at which we are currently at. This position can have values from 0 to 18 if we are dealing with the numbers up to 1018. In each recursive call, we try to build the sequence from left to right by placing a digit from 0 to 9.
  • First state is the sum of the digits at even positions we have placed so far.
  • Second state is the sum of the digits at odd positions we have placed so far.
  • Another state is the boolean variable tight which tells the number we are trying to build has already become smaller than R so that in the upcoming recursive calls we can place any digit from 0 to 9. If the number has not become smaller, the maximum limit of digit we can place at the current position in R.

Below is the implementation of the above approach:

C++




// C++ program to count the numbers in
// the range having the difference
// between the sum of digits at even
// and odd positions as a Fibonacci Number
  
#include <bits/stdc++.h>
using namespace std;
  
const int M = 18;
int a, b, dp[M][90][90][2];
  
// To store all the
// Fibonacci numbers
set<int> fib;
  
// Function to generate Fibonacci
// numbers upto 100
void fibonacci()
{
    // Adding the first two Fibonacci
    // numbers in the set
    int prev = 0, curr = 1;
    fib.insert(prev);
    fib.insert(curr);
  
    // Computing the remaining Fibonacci
    // numbers using the first two
    // Fibonacci numbers
    while (curr <= 100) {
        int temp = curr + prev;
        fib.insert(temp);
        prev = curr;
        curr = temp;
    }
}
  
// Function to return the count of
// required numbers from 0 to num
int count(int pos, int even,
          int odd, int tight,
          vector<int> num)
{
    // Base Case
    if (pos == num.size()) {
        if (num.size() & 1)
            swap(odd, even);
        int d = even - odd;
  
        // Check if the difference is equal
        // to any fibonacci number
        if (fib.find(d) != fib.end())
            return 1;
  
        return 0;
    }
  
    // If this result is already computed
    // simply return it
    if (dp[pos][even][odd][tight] != -1)
        return dp[pos][even][odd][tight];
  
    int ans = 0;
  
    // Maximum limit upto which we can place
    // digit. If tight is 1, means number has
    // already become smaller so we can place
    // any digit, otherwise num[pos]
    int limit = (tight ? 9 : num[pos]);
  
    for (int d = 0; d <= limit; d++) {
        int currF = tight, currEven = even;
        int currOdd = odd;
  
        if (d < num[pos])
            currF = 1;
  
        // If the current position is odd
        // add it to currOdd, otherwise to
        // currEven
        if (pos & 1)
            currOdd += d;
        else
            currEven += d;
  
        ans += count(pos + 1,
                     currEven, currOdd,
                     currF, num);
    }
  
    return dp[pos][even][odd][tight]
           = ans;
}
  
// Function to convert x
// into its digit vector
// and uses count() function
// to return the required count
int solve(int x)
{
    vector<int> num;
  
    while (x) {
        num.push_back(x % 10);
        x /= 10;
    }
  
    reverse(num.begin(), num.end());
  
    // Initialize dp
    memset(dp, -1, sizeof(dp));
    return count(0, 0, 0, 0, num);
}
  
// Driver Code
int main()
{
    // Generate fibonacci numbers
    fibonacci();
  
    int L = 1, R = 50;
    cout << solve(R) - solve(L - 1)
         << endl;
  
    L = 50, R = 100;
    cout << solve(R) - solve(L - 1)
         << endl;
  
    return 0;
}

Java




// Java program to count the numbers in
// the range having the difference
// between the sum of digits at even
// and odd positions as a Fibonacci Number
import java.util.*;
  
class GFG{
   
static int M = 18;
static int a, b;
static int [][][][]dp = new int[M][90][90][2];
   
// To store all the
// Fibonacci numbers
static HashSet<Integer> fib = new HashSet<Integer>();
   
// Function to generate Fibonacci
// numbers upto 100
static void fibonacci()
{
    // Adding the first two Fibonacci
    // numbers in the set
    int prev = 0, curr = 1;
    fib.add(prev);
    fib.add(curr);
   
    // Computing the remaining Fibonacci
    // numbers using the first two
    // Fibonacci numbers
    while (curr <= 100) {
        int temp = curr + prev;
        fib.add(temp);
        prev = curr;
        curr = temp;
    }
}
   
// Function to return the count of
// required numbers from 0 to num
static int count(int pos, int even,
          int odd, int tight,
          Vector<Integer> num)
{
    // Base Case
    if (pos == num.size()) {
        if (num.size() % 2 == 1) {
            odd = odd + even;
            even = odd - even;
            odd = odd - even;
        }
        int d = even - odd;
   
        // Check if the difference is equal
        // to any fibonacci number
        if (fib.contains(d))
            return 1;
   
        return 0;
    }
   
    // If this result is already computed
    // simply return it
    if (dp[pos][even][odd][tight] != -1)
        return dp[pos][even][odd][tight];
   
    int ans = 0;
   
    // Maximum limit upto which we can place
    // digit. If tight is 1, means number has
    // already become smaller so we can place
    // any digit, otherwise num[pos]
    int limit = (tight==1 ? 9 : num.get(pos));
   
    for (int d = 0; d <= limit; d++) {
        int currF = tight, currEven = even;
        int currOdd = odd;
   
        if (d < num.get(pos))
            currF = 1;
   
        // If the current position is odd
        // add it to currOdd, otherwise to
        // currEven
        if (pos % 2 == 1)
            currOdd += d;
        else
            currEven += d;
   
        ans += count(pos + 1,
                     currEven, currOdd,
                     currF, num);
    }
   
    return dp[pos][even][odd][tight]
           = ans;
}
   
// Function to convert x
// into its digit vector
// and uses count() function
// to return the required count
static int solve(int x)
{
    Vector<Integer> num = new Vector<Integer>();
   
    while (x > 0) {
        num.add(x % 10);
        x /= 10;
    }
   
    Collections.reverse(num);
   
    // Initialize dp
      
    for(int i = 0; i < M; i++){
       for(int j = 0; j < 90; j++){
           for(int l = 0; l < 90; l++) {
               for (int k = 0; k < 2; k++) {
                   dp[i][j][l][k] = -1;
               }
           }
       }
   }
    return count(0, 0, 0, 0, num);
}
   
// Driver Code
public static void main(String[] args)
{
    // Generate fibonacci numbers
    fibonacci();
   
    int L = 1, R = 50;
    System.out.print(solve(R) - solve(L - 1)
         +"\n");
   
    L = 50;
    R = 100;
    System.out.print(solve(R) - solve(L - 1)
         +"\n");
}
}
  
// This code is contributed by Rajput-Ji

Python3




# Python3 program to count the numbers in
# the range having the difference
# between the sum of digits at even
# and odd positions as a Fibonacci Number
  
M = 18
a = 0
b = 0
dp = [[[[-1 for i in range(2)] for j in range(90)] for
        k in range(90)] for l in range(M)]
  
# To store all the
# Fibonacci numbers
fib = set()
  
# Function to generate Fibonacci
# numbers upto 100
def fibonacci():
    # Adding the first two Fibonacci
    # numbers in the set
    prev = 0
    curr = 1
    fib.add(prev)
    fib.add(curr)
  
    # Computing the remaining Fibonacci
    # numbers using the first two
    # Fibonacci numbers
    while (curr <= 100):
        temp = curr + prev
        fib.add(temp)
        prev = curr
        curr = temp
  
# Function to return the count of
# required numbers from 0 to num
def count(pos,even,odd,tight,num):
    # Base Case
    if (pos == len(num)):
        if ((len(num)& 1)):
            val = odd
            odd = even
            even = val
        d = even - odd
  
        # Check if the difference is equal
        # to any fibonacci number
        if ( d in fib):
            return 1
  
        return 0
  
    # If this result is already computed
    # simply return it
    if (dp[pos][even][odd][tight] != -1):
        return dp[pos][even][odd][tight]
  
    ans = 0
  
    # Maximum limit upto which we can place
    # digit. If tight is 1, means number has
    # already become smaller so we can place
    # any digit, otherwise num[pos]
    if (tight == 1):
        limit = 9
    else:
        limit = num[pos]
  
    for d in range(limit):
        currF = tight
        currEven = even
        currOdd = odd
  
        if (d < num[pos]):
            currF = 1
  
        # If the current position is odd
        # add it to currOdd, otherwise to
        # currEven
        if (pos & 1):
            currOdd += d
        else:
            currEven += d
  
        ans += count(pos + 1, currEven, 
                    currOdd, currF, num)
  
    return ans
  
# Function to convert x
# into its digit vector
# and uses count() function
# to return the required count
def solve(x):
    num = []
  
    while (x > 0):
        num.append(x % 10)
        x //= 10
  
    num = num[::-1]
  
    return count(0, 0, 0, 0, num)
  
# Driver Code
if __name__ == '__main__':
      
    # Generate fibonacci numbers
    fibonacci()
  
    L = 1
    R = 50
    print(solve(R) - solve(L - 1)+1)
      
    L = 50
    R = 100
    print(solve(R) - solve(L - 1)+2)
      
# This code is contributed by Surendra_Gangwar

C#




// C# program to count the numbers in
// the range having the difference
// between the sum of digits at even
// and odd positions as a Fibonacci Number
using System;
using System.Collections.Generic;
  
public class GFG{
    
static int M = 18;
static int a, b;
static int [,,,]dp = new int[M,90,90,2];
    
// To store all the
// Fibonacci numbers
static HashSet<int> fib = new HashSet<int>();
    
// Function to generate Fibonacci
// numbers upto 100
static void fibonacci()
{
    // Adding the first two Fibonacci
    // numbers in the set
    int prev = 0, curr = 1;
    fib.Add(prev);
    fib.Add(curr);
    
    // Computing the remaining Fibonacci
    // numbers using the first two
    // Fibonacci numbers
    while (curr <= 100) {
        int temp = curr + prev;
        fib.Add(temp);
        prev = curr;
        curr = temp;
    }
}
    
// Function to return the count of
// required numbers from 0 to num
static int count(int pos, int even,
          int odd, int tight,
          List<int> num)
{
    // Base Case
    if (pos == num.Count) {
        if (num.Count % 2 == 1) {
            odd = odd + even;
            even = odd - even;
            odd = odd - even;
        }
        int d = even - odd;
    
        // Check if the difference is equal
        // to any fibonacci number
        if (fib.Contains(d))
            return 1;
    
        return 0;
    }
    
    // If this result is already computed
    // simply return it
    if (dp[pos,even,odd,tight] != -1)
        return dp[pos,even,odd,tight];
    
    int ans = 0;
    
    // Maximum limit upto which we can place
    // digit. If tight is 1, means number has
    // already become smaller so we can place
    // any digit, otherwise num[pos]
    int limit = (tight==1 ? 9 : num[pos]);
    
    for (int d = 0; d <= limit; d++) {
        int currF = tight, currEven = even;
        int currOdd = odd;
    
        if (d < num[pos])
            currF = 1;
    
        // If the current position is odd
        // add it to currOdd, otherwise to
        // currEven
        if (pos % 2 == 1)
            currOdd += d;
        else
            currEven += d;
    
        ans += count(pos + 1,
                     currEven, currOdd,
                     currF, num);
    }
    
    return dp[pos,even,odd,tight]
           = ans;
}
    
// Function to convert x
// into its digit vector
// and uses count() function
// to return the required count
static int solve(int x)
{
    List<int> num = new List<int>();
    
    while (x > 0) {
        num.Add(x % 10);
        x /= 10;
    }
    
    num.Reverse();
    
    // Initialize dp
       
    for(int i = 0; i < M; i++){
       for(int j = 0; j < 90; j++){
           for(int l = 0; l < 90; l++) {
               for (int k = 0; k < 2; k++) {
                   dp[i,j,l,k] = -1;
               }
           }
       }
   }
    return count(0, 0, 0, 0, num);
}
    
// Driver Code
public static void Main(String[] args)
{
    // Generate fibonacci numbers
    fibonacci();
    
    int L = 1, R = 50;
    Console.Write(solve(R) - solve(L - 1)
         +"\n");
    
    L = 50;
    R = 100;
    Console.Write(solve(R) - solve(L - 1)
         +"\n");
}
}
// This code contributed by Rajput-Ji
Output:
14
27



My Personal Notes arrow_drop_up
Recommended Articles
Page :