Skip to content
Related Articles
Numbers less than N which are product of exactly two distinct prime numbers
• Difficulty Level : Easy
• Last Updated : 24 Mar, 2021

Given a number . The task is to find all such numbers less than N and are a product of exactly two distinct prime numbers.
For Example, 33 is the product of two distinct primes i.e 11 * 3, whereas numbers like 60 which has three distinct prime factors i.e 2 * 2 * 3 * 5.
Note: These numbers cannot be a perfect square.
Examples:

Input : N = 30
Output : 6, 10, 14, 15, 21, 22, 26
Input : N = 50
Output : 6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46

Algorithm

1. Traverse till N and check whether each number has exactly two prime factors or not.
2. Now to avoid the situation like 49 having 7 * 7 product of two prime numbers, check whether the number is a perfect square or not to ensure that it has two distinct prime.
3. If Step 1 and Step 2 satisfies then add the number in the vector list.
4. Traverse the vector and print all the elements in it.

Below is the implementation of the above approach:

## C++

 // C++ program to find numbers that are product// of exactly two distinct prime numbers #include using namespace std; // Function to check whether a number// is a PerfectSquare or notbool isPerfectSquare(long double x){     long double sr = sqrt(x);     return ((sr - floor(sr)) == 0);} // Function to check if a number is a// product of exactly two distinct primesbool isProduct(int num){    int cnt = 0;     for (int i = 2; cnt < 2 && i * i <= num; ++i) {        while (num % i == 0) {            num /= i;            ++cnt;        }    }     if (num > 1)        ++cnt;     return cnt == 2;} // Function to find numbers that are product// of exactly two distinct prime numbers.void findNumbers(int N){    // Vector to store such numbers    vector<int> vec;     for (int i = 1; i <= N; i++) {        if (isProduct(i) && !isPerfectSquare(i)) {             // insert in the vector            vec.push_back(i);        }    }     // Print all numers till n from the vector    for (int i = 0; i < vec.size(); i++) {        cout << vec[i] << " ";    }} // Driver functionint main(){    int N = 30;     findNumbers(N);     return 0;}

## Java

 // Java program to find numbers that are product// of exactly two distinct prime numbersimport java.util.*;  class GFG{// Function to check whether a number// is a PerfectSquare or notstatic boolean isPerfectSquare(double x){     double sr = Math.sqrt(x);     return ((sr - Math.floor(sr)) == 0);} // Function to check if a number is a// product of exactly two distinct primesstatic boolean isProduct(int num){    int cnt = 0;     for (int i = 2; cnt < 2 && i * i <= num; ++i) {        while (num % i == 0) {            num /= i;            ++cnt;        }    }     if (num > 1)        ++cnt;     return cnt == 2;} // Function to find numbers that are product// of exactly two distinct prime numbers.static void findNumbers(int N){    // Vector to store such numbers    Vector vec = new Vector();     for (int i = 1; i <= N; i++) {        if (isProduct(i) && !isPerfectSquare(i)) {             // insert in the vector            vec.add(i);        }    }     // Print all numers till n from the vector    Iterator itr = vec.iterator();             while(itr.hasNext()){                  System.out.print(itr.next()+" ");             } } // Driver functionpublic static void main(String[] args){    int N = 30;     findNumbers(N);}}// This Code is Contributed by mits

## Python 3

 # Python 3 program to find numbers that are product# of exactly two distinct prime numbers import math# Function to check whether a number# is a PerfectSquare or notdef isPerfectSquare(x):      sr = math.sqrt(x)      return ((sr - math.floor(sr)) == 0) # Function to check if a number is a# product of exactly two distinct primesdef isProduct( num):    cnt = 0      i = 2    while cnt < 2 and i * i <= num:        while (num % i == 0) :            num //= i            cnt += 1        i += 1      if (num > 1):        cnt += 1      return cnt == 2  # Function to find numbers that are product# of exactly two distinct prime numbers.def findNumbers(N):    # Vector to store such numbers    vec = []      for i in range(1,N+1) :        if (isProduct(i) and not isPerfectSquare(i)) :              # insert in the vector            vec.append(i)      # Print all numers till n from the vector    for i in range(len( vec)):        print(vec[i] ,end= " ")  # Driver functionif __name__=="__main__":         N = 30    findNumbers(N)

## C#

 // C# program to find numbers that are product// of exactly two distinct prime numbersusing System;using System.Collections.Generic; class GFG{    // Function to check whether a number    // is a PerfectSquare or not    static bool isPerfectSquare(double x)    {         double sr = Math.Sqrt(x);         return ((sr - Math.Floor(sr)) == 0);    }     // Function to check if a number is a    // product of exactly two distinct primes    static bool isProduct(int num)    {        int cnt = 0;         for (int i = 2; cnt < 2 && i * i <= num; ++i)        {            while (num % i == 0)            {                num /= i;                ++cnt;            }        }         if (num > 1)            ++cnt;         return cnt == 2;    }     // Function to find numbers that are product    // of exactly two distinct prime numbers.    static void findNumbers(int N)    {        // Vector to store such numbers        List<int> vec = new List<int>();         for (int i = 1; i <= N; i++)        {            if (isProduct(i) && !isPerfectSquare(i))            {                 // insert in the vector                vec.Add(i);            }        }         // Print all numers till n from the vector        foreach(var a in vec)                    Console.Write(a + " ");    }     // Driver code    public static void Main(String[] args)    {        int N = 30;         findNumbers(N);    }} // This code has been contributed by 29AjayKumar

## PHP

  1)        ++$cnt;  return $cnt == 2;} // Function to find numbers that are product// of exactly two distinct prime numbers.function findNumbers($N){ // Vector to store such numbers $vec = array();     for ($i = 1; $i <= $N; $i++)    {        if (isProduct($i) && !isPerfectSquare($i))        {             // insert in the vector            array_push($vec, $i);        }    }     // Print all numers till n from the vector    for ($i = 0; $i < sizeof($vec); $i++)    {        echo $vec[$i] . " ";    }} // Driver Code$N = 30; findNumbers($N); // This code is contributed by ita_c

## Javascript

 
Output:
6 10 14 15 21 22 26

Time Complexity: O( * )

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live

My Personal Notes arrow_drop_up