Number of Symmetric Relations on a Set

Given a number n, find out number of Symmetric Relations on a set of first n natural numbers {1, 2, ..n}.

Examples:

Input  : n = 2
Output : 8
Given set is {1, 2}. Below are all symmetric relation.
{}
{(1, 1)}, 
{(2, 2)},
{(1, 1), (2, 2)}, 
{(1, 2), (2, 1)} 
{(1, 1), (1, 2), (2, 1)},
{(2, 2), (1, 2), (2, 1)}, 
{(1, 1), (1, 2), (2, 1), (1, 2)} 

Input  : n = 3
Output : 64

A Relation ‘R’ on Set A is said be Symmetric if xRy then yRx for every x, y ∈ A
or if (x, y) ∈ R, then (y, x) ∈ R for every x, y?A

Total number of symmetric relations is 2n(n+1)/2.

How does this formula work?

A relation R is symmetric if the value of every cell (i, j) is same as that cell (j, i). The diagonals can have any value.
MATRIX4

There are n diagonal values, total possible combination of diagonal values = 2n
There are n2 – n non-diagonal values. We can only choose different value for half of them, because when we choose a value for cell (i, j), cell (j, i) gets same value.
So combination of non-diagonal values = 2(n2 – n)/2

Overall combination = 2n * 2(n2 – n)/2 = 2n(n+1)/2

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to count total symmetric relations
// on a set of natural numbers.
#include <bits/stdc++.h>
  
// function find the square of n
unsigned int countSymmetric(unsigned int n)
{
    // Base case
    if (n == 0)
        return 1;
  
   // Return 2^(n(n + 1)/2)
   return 1 << ((n * (n + 1))/2);
}
  
// Driver code
int main()
{
    unsigned int n = 3;
  
    printf("%u", countSymmetric(n));
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to count total symmetric 
// relations on a set of natural numbers.
import java.io.*;
import java.util.*;
  
class GFG {
  
    // function find the square of n
    static int countSymmetric(int n)
    {
        // Base case
        if (n == 0)
            return 1;
      
    // Return 2^(n(n + 1)/2)
    return 1 << ((n * (n + 1)) / 2);
    }
  
    // Driver code
    public static void main (String[] args) 
    {
        int n = 3;
        System.out.println(countSymmetric(n));
    }
}
  
  
// This code is contributed by Nikita Tiwari.

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 program to count
# total symmetric relations
# on a set of natural numbers.
  
# function find the square of n
def countSymmetric(n) :
    # Base case
    if (n == 0) :
        return 1
   
    # Return 2^(n(n + 1)/2)
    return (1 << ((n * (n + 1))//2))
  
   
# Driver code
  
n = 3
print(countSymmetric(n))
  
# This code is contributed
# by Nikita Tiwari.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to count total symmetric 
// relations on a set of natural numbers.
using System;
  
class GFG {
  
    // function find the square of n
    static int countSymmetric(int n)
    {
        // Base case
        if (n == 0)
            return 1;
      
    // Return 2^(n(n + 1)/2)
    return 1 << ((n * (n + 1)) / 2);
    }
  
    // Driver code
    public static void Main () 
    {
        int n = 3;
        Console.WriteLine(countSymmetric(n));
    }
}
  
  
// This code is contributed by vt_m.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to count total symmetric 
// relations on a set of natural numbers.
  
// function find the square of n
function countSymmetric($n)
{
    // Base case
    if ($n == 0)
        return 1;
  
    // Return 2^(n(n + 1)/2)
    return 1 << (($n * ($n + 1))/2);
}
  
    // Driver code
    $n = 3;
    echo(countSymmetric($n));
      
// This code is contributed by vt_m.
?>

chevron_right


Output:

64


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : vt_m