Related Articles

# Number of subarrays having sum less than K

• Difficulty Level : Hard
• Last Updated : 04 May, 2021

Given an array of non-negative numbers and a non-negative number k, find the number of subarrays having sum less than k. We may assume that there is no overflow.
Examples :

```Input : arr[] = {2, 5, 6}
K = 10
Output : 4
The subarrays are {2}, {5}, {6} and
{2, 5},

Input : arr[] = {1, 11, 2, 3, 15}
K = 10
Output : 4
{1}, {2}, {3} and {2, 3}```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

A simple solution is to generate all subarrays of the array and then count the number of arrays having sum less than K.
Below is the implementation of above approach :

## C++

 `// CPP program to count``// subarrays having sum``// less than k.``#include ``using` `namespace` `std;` `// Function to find number``// of subarrays having sum``// less than k.``int` `countSubarray(``int` `arr[],``                  ``int` `n, ``int` `k)``{``    ``int` `count = 0;` `    ``for` `(``int` `i = 0; i < n; i++) {``        ``int` `sum = 0;``        ``for` `(``int` `j = i; j < n; j++) {` `            ``// If sum is less than k``            ``// then update sum and``            ``// increment count``            ``if` `(sum + arr[j] < k) {``                ``sum = arr[j] + sum;``                ``count++;``            ``}``            ``else` `{``                ``break``;``            ``}``        ``}``    ``}` `    ``return` `count;``}` `// Driver Code``int` `main()``{``    ``int` `array[] = { 1, 11, 2, 3, 15 };``    ``int` `k = 10;``    ``int` `size = ``sizeof``(array) / ``sizeof``(array);``    ``int` `count = countSubarray(array, size, k);``    ``cout << count << ``"\n"``;``}`

## Java

 `// Java program to count subarrays``// having sum less than k.``import` `java.io.*;` `class` `GFG {` `    ``// Function to find number of``    ``// subarrays having sum less than k.``    ``static` `int` `countSubarray(``int` `arr[],``                             ``int` `n, ``int` `k)``    ``{``        ``int` `count = ``0``;` `        ``for` `(``int` `i = ``0``; i < n; i++) {``            ``int` `sum = ``0``;``            ``for` `(``int` `j = i; j < n; j++) {` `                ``// If sum is less than``                ``// k then update sum and``                ``// increment count``                ``if` `(sum + arr[j] < k) {``                    ``sum = arr[j] + sum;``                    ``count++;``                ``}``                ``else` `{``                    ``break``;``                ``}``            ``}``        ``}``        ``return` `count;``    ``}` `    ``// Driver Code``    ``public` `static` `void` `main(String[] args)``    ``{``        ``int` `array[] = { ``1``, ``11``, ``2``, ``3``, ``15` `};``        ``int` `k = ``10``;``        ``int` `size = array.length;``        ``int` `count = countSubarray(array, size, k);``        ``System.out.println(count);``    ``}``}` `// This code is contributed by Sam007`

## Python3

 `# python program to count subarrays``# having sum less than k.` `# Function to find number of subarrays``# having sum less than k.``def` `countSubarray(arr, n, k):``    ``count ``=` `0` `    ``for` `i ``in` `range``(``0``, n):``        ``sum` `=` `0``;``        ``for` `j ``in` `range``(i, n):``            ` `            ``# If sum is less than k``            ``# then update sum and``            ``# increment count``            ``if` `(``sum` `+` `arr[j] < k):``                ``sum` `=` `arr[j] ``+` `sum``                ``count``+``=` `1``            ``else``:``                ``break``    ``return` `count;`  `# Driver Code``array ``=` `[``1``, ``11``, ``2``, ``3``, ``15``]``k ``=` `10``size ``=` `len``(array)``count ``=` `countSubarray(array, size, k);``print``(count)` `# This code is contributed by Sam007`

## C#

 `// C# program to count subarrays``// having sum less than k.``using` `System;` `class` `GFG {` `    ``// Function to find number``    ``// of subarrays having sum``    ``// less than k.``    ``static` `int` `countSubarray(``int``[] arr,``                             ``int` `n, ``int` `k)``    ``{``        ``int` `count = 0;` `        ``for` `(``int` `i = 0; i < n; i++) {``            ``int` `sum = 0;``            ``for` `(``int` `j = i; j < n; j++) {` `                ``// If sum is less than k``                ``// then update sum and``                ``// increment count``                ``if` `(sum + arr[j] < k) {``                    ``sum = arr[j] + sum;``                    ``count++;``                ``}``                ``else` `{``                    ``break``;``                ``}``            ``}``        ``}``        ``return` `count;``    ``}` `    ``// Driver Code``    ``public` `static` `void` `Main(String[] args)``    ``{``        ``int``[] array = { 1, 11, 2, 3, 15 };``        ``int` `k = 10;``        ``int` `size = array.Length;``        ``int` `count = countSubarray(array, size, k);``        ``Console.WriteLine(count);``    ``}``}` `// This code is contributed by Sam007`

## PHP

 ``

## Javascript

 ``
Output :
`4`

Time complexity : O(n^2).
An efficient solution is based on a sliding window technique that can be used to solve the problem. We use two pointers start and end to represent starting and ending points of the sliding window. (Not that we need to find contiguous parts).
Initially both start and endpoint to the beginning of the array, i.e. index 0. Now, let’s try to add a new element el. There are two possible conditions.
1st case :
If sum is less than k, increment end by one position. So contiguous arrays this step produce are (end – start). We also add el to previous sum. There are as many such arrays as the length of the window.
2nd case :
If sum becomes greater than or equal to k, this means we need to subtract starting element from sum so that the sum again becomes less than k. So we adjust the window’s left border by incrementing start.
We follow the same procedure until end < array size.
Implementation:

## C++

 `// CPP program to count``// subarrays having sum``// less than k.``#include ``using` `namespace` `std;` `// Function to find number``// of subarrays having sum``// less than k.``int` `countSubarrays(``int` `arr[],``                   ``int` `n, ``int` `k)``{``    ``int` `start = 0, end = 0,``        ``count = 0, sum = arr;` `    ``while` `(start < n && end < n) {` `        ``// If sum is less than k,``        ``// move end by one position.``        ``// Update count and sum``        ``// accordingly.``        ``if` `(sum < k) {``            ``end++;` `            ``if` `(end >= start)``                ``count += end - start;` `            ``// For last element,``            ``// end may become n``            ``if` `(end < n)``                ``sum += arr[end];``        ``}` `        ``// If sum is greater than or``        ``// equal to k, subtract``        ``// arr[start] from sum and``        ``// decrease sliding window by``        ``// moving start by one position``        ``else` `{``            ``sum -= arr[start];``            ``start++;``        ``}``    ``}` `    ``return` `count;``}` `// Driver Code``int` `main()``{``    ``int` `array[] = { 1, 11, 2, 3, 15 };``    ``int` `k = 10;``    ``int` `size = ``sizeof``(array) / ``sizeof``(array);``    ``cout << countSubarrays(array, size, k);``}`

## Java

 `// Java program to count``// subarrays having sum``// less than k.``import` `java.io.*;` `class` `GFG {` `    ``// Function to find number``    ``// of subarrays having sum``    ``// less than k.``    ``static` `int` `countSubarray(``int` `arr[],``                             ``int` `n, ``int` `k)``    ``{``        ``int` `start = ``0``, end = ``0``;``        ``int` `count = ``0``, sum = arr[``0``];` `        ``while` `(start < n && end < n) {` `            ``// If sum is less than k,``            ``// move end by one position.``            ``// Update count and sum``            ``// accordingly.``            ``if` `(sum < k) {``                ``end++;` `                ``if` `(end >= start)``                    ``count += end - start;` `                ``// For last element,``                ``// end may become n.``                ``if` `(end < n)``                    ``sum += arr[end];``            ``}` `            ``// If sum is greater than or``            ``// equal to k, subtract``            ``// arr[start] from sum and``            ``// decrease sliding window by``            ``// moving start by one position``            ``else` `{``                ``sum -= arr[start];``                ``start++;``            ``}``        ``}` `        ``return` `count;``    ``}` `    ``// Driver Code``    ``public` `static` `void` `main(String[] args)``    ``{``        ``int` `array[] = { ``1``, ``11``, ``2``, ``3``, ``15` `};``        ``int` `k = ``10``;``        ``int` `size = array.length;``        ``int` `count = countSubarray(array, size, k);``        ``System.out.println(count);``    ``}``}` `// This code is contributed by Sam007`

## Python 3

 `# Python 3 program to count subarrays``# having sum less than k.` `# Function to find number of subarrays``# having sum less than k.``def` `countSubarrays(arr, n, k):` `    ``start ``=` `0``    ``end ``=` `0``    ``count ``=` `0``    ``sum` `=` `arr[``0``]` `    ``while` `(start < n ``and` `end < n) :` `        ``# If sum is less than k, move end``        ``# by one position. Update count and``        ``# sum accordingly.``        ``if` `(``sum` `< k) :``            ``end ``+``=` `1` `            ``if` `(end >``=` `start):``                ``count ``+``=` `end ``-` `start` `            ``# For last element, end may become n``            ``if` `(end < n):``                ``sum` `+``=` `arr[end]` `        ``# If sum is greater than or equal to k,``        ``# subtract arr[start] from sum and``        ``# decrease sliding window by moving``        ``# start by one position``        ``else` `:``            ``sum` `-``=` `arr[start]``            ``start ``+``=` `1` `    ``return` `count` `# Driver Code``if` `__name__ ``=``=` `"__main__"``:``    ` `    ``array ``=` `[ ``1``, ``11``, ``2``, ``3``, ``15` `]``    ``k ``=` `10``    ``size ``=` `len``(array)``    ``print``(countSubarrays(array, size, k))` `# This code is contributed by ita_c`

## C#

 `// C# program to count``// subarrays having sum``// less than k.``using` `System;` `class` `GFG {` `    ``// Function to find number``    ``// of subarrays having sum``    ``// less than k.``    ``static` `int` `countSubarray(``int``[] arr,``                             ``int` `n, ``int` `k)``    ``{``        ``int` `start = 0, end = 0;``        ``int` `count = 0, sum = arr;` `        ``while` `(start < n && end < n) {` `            ``// If sum is less than k,``            ``// move end by one position.``            ``// Update count and sum``            ``// accordingly.``            ``if` `(sum < k) {``                ``end++;` `                ``if` `(end >= start)``                    ``count += end - start;` `                ``// For last element,``                ``// end may become n.``                ``if` `(end < n)``                    ``sum += arr[end];``            ``}` `            ``// If sum is greater than or``            ``// equal to k, subtract``            ``// arr[start] from sum and``            ``// decrease sliding window by``            ``// moving start by one position``            ``else` `{``                ``sum -= arr[start];``                ``start++;``            ``}``        ``}` `        ``return` `count;``    ``}` `    ``// Driver Code``    ``public` `static` `void` `Main(String[] args)``    ``{``        ``int``[] array = { 1, 11, 2, 3, 15 };``        ``int` `k = 10;``        ``int` `size = array.Length;``        ``int` `count = countSubarray(array, size, k);``        ``Console.WriteLine(count);``    ``}``}` `// This code is contributed by Sam007`

## PHP

 `= ``\$start``)``            ``\$count` `+= ``\$end` `- ``\$start``;` `            ``// For last element,``            ``// end may become n``            ``if` `(``\$end` `< ``\$n``)``            ``\$sum` `+= ``\$arr``[``\$end``];``        ``}` `        ``// If sum is greater than or``        ``// equal to k, subtract``        ``// arr[start] from sum and``        ``// decrease sliding window by``        ``// moving start by one position``        ``else``        ``{``            ``\$sum` `-= ``\$arr``[``\$start``];``            ``\$start``++;``        ``}``    ``}` `    ``return` `\$count``;``}` `    ``// Driver Code``    ``\$array` `=``array` `(1, 11, 2, 3, 15);``    ``\$k` `= 10;``    ``\$size` `= sizeof(``\$array``) ;``    ``echo` `countSubarrays(``\$array``, ``\$size``, ``\$k``);` `// This code is contributed by ajit``?>`

## Javascript

 ``
Output:
`4`

Time complexity : O(n).

My Personal Notes arrow_drop_up