Given a number n, find out number of Reflexive Relation on a set of first n natural numbers {1, 2, ..n}.**Examples :**

Input : n = 2 Output : 4 The given set A = {1, 2}. The following are reflexive relations on A * A : {{1, 1), (2, 2)} {(1, 1), (2, 2), (1, 2)} {(1, 1), (2, 2), (1, 2), (2, 1)} {(1, 1), (2, 2), (2, 1)} Input : n = 3 Output : 64 The given set is {1, 2, 3}. There are 64 reflexive relations on A * A :

**Explanation :**

Reflexive Relation : A Relation R on A a set A is said to be Reflexive if xRx for every element of x ? A.

The number of reflexive relations on an n-element set is

2^{n2 – n}How does this formula work?

A relation R is reflexive if the matrix diagonal elements are 1.

If we take a closer look the matrix, we can notice that the size of matrix is n

^{2}. The n diagonal entries are fixed. For remaining n^{2}– n entries, we have choice to either fill 0 or 1. So there are total2ways of filling the matrix.^{n2 – n}

## CPP

`// C++ Program to count reflexive relations` `// on a set of first n natural numbers.` `#include <iostream>` `using` `namespace` `std;` `int` `countReflexive(` `int` `n)` `{` ` ` `// Return 2^(n*n - n)` ` ` `return` `(1 << (n*n - n));` `}` `int` `main()` `{ ` ` ` `int` `n = 3;` ` ` `cout << countReflexive(n);` ` ` `return` `0;` `}` |

## Java

`// Java Program to count reflexive` `// relations on a set of first n` `// natural numbers.` `import` `java.io.*;` `import` `java.util.*;` `class` `GFG {` ` ` `static` `int` `countReflexive(` `int` `n)` `{` `// Return 2^(n*n - n)` `return` `(` `1` `<< (n*n - n));` `}` `// Driver function` ` ` `public` `static` `void` `main (String[] args) {` ` ` `int` `n = ` `3` `;` ` ` `System.out.println(countReflexive(n));` ` ` ` ` `}` `}` `// This code is contributed by Gitanjali.` |

## Python3

`# Python3 Program to count` `# reflexive relations` `# on a set of first n` `# natural numbers.` ` ` `def` `countReflexive(n):` ` ` `# Return 2^(n*n - n)` ` ` `return` `(` `1` `<< (n` `*` `n ` `-` `n));` `# driver function` `n ` `=` `3` `ans ` `=` `countReflexive(n);` `print` `(ans)` `# This code is contributed by saloni1297` |

## C#

`// C# Program to count reflexive` `// relations on a set of first n` `// natural numbers.` `using` `System;` `class` `GFG {` ` ` ` ` `static` `int` `countReflexive(` `int` `n)` ` ` `{` ` ` ` ` `// Return 2^(n*n - n)` ` ` `return` `(1 << (n*n - n));` ` ` ` ` `}` ` ` ` ` `// Driver function` ` ` `public` `static` `void` `Main () {` ` ` ` ` `int` `n = 3;` ` ` `Console.WriteLine(countReflexive(n));` ` ` `}` `}` `// This code is contributed by vt_m.` |

## PHP

`<?php` `// PHP Program to count` `// reflexive relations on a` `// set of first n natural numbers.` `function` `countReflexive(` `$n` `)` `{` `// Return 2^(n * n - n)` `return` `(1 << (` `$n` `* ` `$n` `- ` `$n` `));` `}` `//Driver code` `$n` `= 3;` `echo` `countReflexive(` `$n` `);` `// This code is contributed by mits` `?>` |

## Javascript

`<script>` ` ` `// Javascript Program to count reflexive` ` ` `// relations on a set of first n` ` ` `// natural numbers.` ` ` ` ` `function` `countReflexive(n)` ` ` `{` ` ` `// Return 2^(n*n - n)` ` ` `return` `(1 << (n*n - n));` ` ` `}` ` ` ` ` `let n = 3;` ` ` `document.write(countReflexive(n));` ` ` ` ` `// This code is contributed by divyesh072019.` `</script>` |

**Output :**

64

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the **Essential Maths for CP Course** at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more, please refer **Complete Interview Preparation Course****.**