Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Number of positions where a letter can be inserted such that a string becomes palindrome

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given a string str, we need to find the no. of positions where a letter(lowercase) can be inserted so that string becomes a palindrome. 

Examples: 

Input : str = "abca"
Output : possible palindromic strings: 
         1) acbca (at position 2)
         2) abcba (at position 4)
         Hence, the output is 2.

Input : str = "aaa"
Output : possible palindromic strings:
         1) aaaa
         2) aaaa
         3) aaaa
         4) aaaa
         Hence, the output is 4. 

Naive Approach: This approach is to insert all 26 alphabets at every position possible i.e., N+1 positions and check at every position if this insertion makes it a palindrome and increase the count.

Efficient Approach: First you have to observe that we have to make insertion only at the point when the character at that point violates the palindrome condition i.e., S[i] != S[N-i-1]    . Now, there will be Two cases based on the above fact: 

Case I: What if the given string is already a palindrome 

Then we can only insert at the position such that the insertion does not violate the palindrome. 

  1. If the length is even then we can always insert any letter in the middle. 
  2. If the length is odd then we can insert the letter which is in middle, to the left or right to it. 
  3. In both the cases we can insert the letter which is in middle(let it be ‘CH’), at positions equals to: 
    (no.of consecutive CH’s to the left of middle letter)*2

Case II: If it is not a palindrome 

As mentioned above we should start inserting at position where S[i] != S[N-1-i]    , So we increase the count and check for the cases if insertion at any other position makes it a palindrome. 

  1. If S[i]...S[N-i-2]    is a palindrome, then we can insert* at any position before S[i]    until S[K] != S[N-i-1]    , K in range [i-1, 0]    .(*letter = S[N-i-1]) 
  2. If S[i+1]...S[N-i-1]    is a palindrome, then we can insert* at any position after S[n-i-1]    until S[K] != S[i]    , K in range [N-i, N-1]    .(*letter = S[i]) 

In all the cases we keep increasing the count.

Implementation:

C++




// CPP code to find the no.of positions where a
// letter can be inserted to make it a palindrome
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if the string is palindrome
bool isPalindrome(string &s, int i, int j)
{
    int p = j;
    for (int k = i; k <= p; k++) {
        if (s[k] != s[p])
            return false;
        p--;
    }
    return true;
}
 
int countWays(string &s)
{
    // to know the length of string
    int n = s.length();
    int count = 0;
 
    // if the given string is a palindrome(Case-I)
    if (isPalindrome(s, 0, n - 1))
    {
        // Sub-case-III)
        for (int i = n / 2; i < n; i++)
        {
            if (s[i] == s[i + 1])
                count++;
            else
                break;
        }
        if (n % 2 == 0) // if the length is even
        {
            count++;
            count = 2 * count + 1; // sub-case-I
        } else
            count = 2 * count + 2; // sub-case-II
    } else {
        for (int i = 0; i < n / 2; i++) {
 
            // insertion point
            if (s[i] != s[n - 1 - i])
            {
                int j = n - 1 - i;
 
                // Case-I
                if (isPalindrome(s, i, n - 2 - i))
                {
                    for (int k = i - 1; k >= 0; k--) {
                        if (s[k] != s[j])
                            break;
                        count++;
                    }
                    count++;
                }
 
                // Case-II
                if (isPalindrome(s, i + 1, n - 1 - i))
                {
                    for (int k = n - i; k < n; k++) {
                        if (s[k] != s[i])
                            break;
                        count++;
                    }
                    count++;
                }
                break;
            }
        }
    }
     
    return count;
}
 
// Driver code
int main()
{
    string s = "abca";
    cout << countWays(s) << endl;
    return 0;
}

Java




// Java code to find the no.of positions where a
// letter can be inserted to make it a palindrome
 
import java.io.*;
 
class GFG {
     
    // Function to check if the string is palindrome
    static boolean isPalindrome(String s, int i, int j)
    {
        int p = j;
        for (int k = i; k <= p; k++) {
            if (s.charAt(k) != s.charAt(p))
                return false;
            p--;
        }
         
        return true;
    }
 
    static int countWays(String s)
    {
         
        // to know the length of string
        int n = s.length();
        int count = 0;
 
        // if the given string is a palindrome(Case-I)
        if (isPalindrome(s, 0, n - 1)) {
             
            // Sub-case-III)
            for (int i = n / 2; i < n; i++) {
                if (s.charAt(i) == s.charAt(i + 1))
                    count++;
                else
                    break;
            }
             
            if (n % 2 == 0) // if the length is even
            {
                count++;
                count = 2 * count + 1; // sub-case-I
            }
            else
                count = 2 * count + 2; // sub-case-II
        }
        else {
            for (int i = 0; i < n / 2; i++) {
 
                // insertion point
                if (s.charAt(i) != s.charAt(n - 1 - i)) {
                    int j = n - 1 - i;
 
                    // Case-I
                    if (isPalindrome(s, i, n - 2 - i)) {
                        for (int k = i - 1; k >= 0; k--) {
                            if (s.charAt(k) != s.charAt(j))
                                break;
                            count++;
                        }
                        count++;
                    }
 
                    // Case-II
                    if (isPalindrome(s, i + 1, n - 1 - i)) {
                        for (int k = n - i; k < n; k++) {
                            if (s.charAt(k) != s.charAt(i))
                                break;
                            count++;
                        }
                        count++;
                    }
                    break;
                }
            }
        }
 
        return count;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        String s = "abca";
        System.out.println(countWays(s));
    }
}
 
// This code is contributed by vt_m.

Python 3




# Python 3 code to find the no.of positions
# where a letter can be inserted to make it
# a palindrome
 
# Function to check if the string
# is palindrome
def isPalindrome(s, i, j):
 
    p = j
    for k in range(i, p + 1):
        if (s[k] != s[p]):
            return False
        p -= 1
     
    return True
 
def countWays(s):
 
    # to know the length of string
    n = len(s)
    count = 0
 
    # if the given string is a palindrome(Case-I)
    if (isPalindrome(s, 0, n - 1)) :
     
        # Sub-case-III)
        for i in range(n // 2, n):
 
            if (s[i] == s[i + 1]):
                count += 1
            else:
                break
         
        if (n % 2 == 0): # if the length is even
            count += 1
            count = 2 * count + 1 # sub-case-I
        else:
            count = 2 * count + 2 # sub-case-II
    else :
        for i in range(n // 2) :
 
            # insertion point
            if (s[i] != s[n - 1 - i]) :
                j = n - 1 - i
 
                # Case-I
                if (isPalindrome(s, i, n - 2 - i)) :
                    for k in range(i - 1, -1, -1):
                        if (s[k] != s[j]):
                            break
                        count += 1
                     
                    count += 1
 
                # Case-II
                if (isPalindrome(s, i + 1, n - 1 - i)) :
                    for k in range(n - i, n) :
                        if (s[k] != s[i]):
                            break
                        count += 1
                     
                    count += 1
                 
                break
     
    return count
 
# Driver code
if __name__ == "__main__":
     
    s = "abca"
    print(countWays(s))
 
# This code is contributed by ita_c

C#




// C# code to find the no. of positions
// where a letter can be inserted
// to make it a palindrome.
using System;
 
class GFG {
     
    // Function to check if the
    // string is palindrome
    static bool isPalindrome(String s, int i,
                                       int j)
    {
        int p = j;
        for (int k = i; k <= p; k++)
        {
            if (s[k] != s[p])
                return false;
            p--;
        }
         
        return true;
    }
 
    static int countWays(String s)
    {
         
        // to know the length of string
        int n = s.Length;
        int count = 0;
 
        // if the given string is
        // a palindrome(Case-I)
        if (isPalindrome(s, 0, n - 1)) {
             
            // Sub-case-III)
            for (int i = n / 2; i < n; i++) {
                if (s[i] == s[i + 1])
                    count++;
                else
                    break;
            }
             
            // if the length is even
            if (n % 2 == 0)
            {
                count++;
                 
                // sub-case-I
                count = 2 * count + 1;
            }
            else
             
                // sub-case-II
                count = 2 * count + 2;
        }
        else {
            for (int i = 0; i < n / 2; i++) {
 
                // insertion point
                if (s[i] != s[n - 1 - i]) {
                    int j = n - 1 - i;
 
                    // Case-I
                    if (isPalindrome(s, i, n - 2 - i)) {
                        for (int k = i - 1; k >= 0; k--) {
                            if (s[k] != s[j])
                                break;
                            count++;
                        }
                        count++;
                    }
 
                    // Case-II
                    if (isPalindrome(s, i + 1, n - 1 - i)) {
                        for (int k = n - i; k < n; k++) {
                            if (s[k] != s[i])
                                break;
                            count++;
                        }
                        count++;
                    }
                    break;
                }
            }
        }
 
        return count;
    }
 
    // Driver code
    public static void Main()
    {
        String s = "abca";
        Console.Write(countWays(s));
    }
}
 
// This code is contributed by nitin mittal

PHP




<?php
// PHP code to find the no. of
// positions where a letter can
// be inserted to make it a palindrome
 
// Function to check if the
// string is palindrome
function isPalindrome($s, $i, $j)
{
    $p = $j;
    for ($k = $i; $k <= $p; $k++)
    {
        if ($s[$k] != $s[$p])
            return false;
        $p--;
    }
    return true;
}
 
function countWays($s)
{
     
    // to know the length of string
    $n = strlen($s);
    $count = 0;
 
    // if the given string is
    // a palindrome(Case-I)
    if (isPalindrome($s, 0, $n - 1))
    {
         
        // Sub-case-III)
        for ($i = $n / 2; $i < $n; $i++)
        {
            if ($s[$i] == $s[$i + 1])
                $count++;
            else
                break;
        }
         
        // if the length is even
        if ($n % 2 == 0)
        {
            $count++;
             
            // sub-case-I
            $count = 2 * $count + 1;
        }
        else
         
            // sub-case-II
            $count = 2 * $count + 2;
    }
    else
    {
        for ($i = 0; $i < $n / 2; $i++)
        {
 
            // insertion point
            if ($s[$i] != $s[$n - 1 - $i])
            {
                $j = $n - 1 - $i;
 
                // Case-I
                if (isPalindrome($s, $i, $n - 2 - $i))
                {
                    for ($k = $i - 1; $k >= 0; $k--)
                    {
                        if ($s[$k] != $s[$j])
                            break;
                        $count++;
                    }
                    $count++;
                }
 
                // Case-II
                if (isPalindrome($s, $i + 1,$n - 1 - $i))
                {
                    for ($k = $n - $i; $k < $n; $k++)
                    {
                        if ($s[$k] != $s[$i])
                            break;
                        $count++;
                    }
                    $count++;
                }
                break;
            }
        }
    }
     
    return $count;
}
 
// Driver code
$s = "abca";
echo countWays($s) ;
 
// This code is contributed by nitin mittal
?>

Javascript




<script>
// Javascript code to find the no.of positions where a
// letter can be inserted to make it a palindrome   
    function isPalindrome(s,i,j)
    {
        let p = j;
    for (let k = i; k <= p; k++)
    {
        if (s[k] != s[p])
            return false;
        p--;
    }
    return true;
    }
 
// Function to check if the string is palindrome
function countWays(s)
{
 
    // to know the length of string
    let n = s.length;
    let count = 0;
   
    // if the given string is a palindrome(Case-I)
    if (isPalindrome(s, 0, n - 1))
    {
     
        // Sub-case-III)
        for (let i = n / 2; i < n; i++)
        {
            if (s[i] == s[i + 1])
                count++;
            else
                break;
        }
        if (n % 2 == 0) // if the length is even
        {
            count++;
            count = 2 * count + 1; // sub-case-I
        } else
            count = 2 * count + 2; // sub-case-II
    } else {
        for (let i = 0; i < n / 2; i++) {
   
            // insertion point
            if (s[i] != s[n - 1 - i])
            {
                let j = n - 1 - i;
   
                // Case-I
                if (isPalindrome(s, i, n - 2 - i))
                {
                    for (let k = i - 1; k >= 0; k--) {
                        if (s[k] != s[j])
                            break;
                        count++;
                    }
                    count++;
                }
   
                // Case-II
                if (isPalindrome(s, i + 1, n - 1 - i))
                {
                    for (let k = n - i; k < n; k++) {
                        if (s[k] != s[i])
                            break;
                        count++;
                    }
                    count++;
                }
                break;
            }
        }
    }
       
    return count;
}
 
// Driver code
let s = "abca";
document.write( countWays(s));
    
    // This code is contributed by avanitrachhadiya2155
</script>

Output

2

This article is contributed by Harsha Mogali. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks. 


My Personal Notes arrow_drop_up
Last Updated : 20 Jul, 2022
Like Article
Save Article
Similar Reads
Related Tutorials