Two players are playing a series of games of Rock–paper–scissors. There are a total of **K** games played. Player 1 has a sequence of moves denoted by string **A** and similarly player 2 has string **B**. If any player reaches the end of their string, they move back to the start of the string. The task is to count the number of games won by each of the player when exactly **K** games are being played.

**Examples:**

Input:k = 4, a = “SR”, b = “R”Output:0 2

Game 1: Player1 = S, Player2 = R, Winner = Player2

Game 2: Player1 = R, Player2 = R, Winner = Draw

Game 3: Player1 = S, Player2 = R, Winner = Player2

Game 4: Player1 = R, Player2 = R, Winner = Draw

Input:k = 3, a = “S”, b = “SSS”Output:0 0

All the games are draws.

**Approach:** Let length of string **a** be **n** and length of string **b** be **m**. The observation here is that the games would repeat after **n * m** moves. So, we can simulate the process for **n * m** games and then count the number of times it gets repeated. For the remaining games, we can again simulate the process since it would be now smaller than **n * m**. For example, in the first example above, **n = 2** and **m = 1**. So, the games will repeat after every **n * m = 2 * 1 = 2** moves i.e. **(Player2, Draw)**, **(Player2, Draw)**, ….., **(Player2, Draw)**.

Below is the implementation of the above approach:

## C++

`// C++ implementation of the above approach` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function that returns 1 if first player wins,` `// 0 in case of a draw and -1 if second player wins` `int` `compare(` `char` `first, ` `char` `second)` `{` ` ` `// If both players have the same move` ` ` `// then it's a draw` ` ` `if` `(first == second)` ` ` `return` `0;` ` ` `if` `(first == ` `'R'` `) {` ` ` `if` `(second == ` `'S'` `)` ` ` `return` `1;` ` ` `else` ` ` `return` `-1;` ` ` `}` ` ` `if` `(first == ` `'P'` `) {` ` ` `if` `(second == ` `'R'` `)` ` ` `return` `1;` ` ` `else` ` ` `return` `-1;` ` ` `}` ` ` `if` `(first == ` `'S'` `) {` ` ` `if` `(second == ` `'P'` `)` ` ` `return` `1;` ` ` `else` ` ` `return` `-1;` ` ` `}` `}` `// Function that returns the count of games` `// won by both the players` `pair<` `int` `, ` `int` `> countWins(` `int` `k, string a, string b)` `{` ` ` `int` `n = a.length();` ` ` `int` `m = b.length();` ` ` `int` `i = 0, j = 0;` ` ` `// Total distinct games that can be played` ` ` `int` `moves = n * m;` ` ` `pair<` `int` `, ` `int` `> wins = { 0, 0 };` ` ` `while` `(moves--) {` ` ` `int` `res = compare(a[i], b[j]);` ` ` `// Player 1 wins the current game` ` ` `if` `(res == 1)` ` ` `wins.first++;` ` ` `// Player 2 wins the current game` ` ` `if` `(res == -1)` ` ` `wins.second++;` ` ` `i = (i + 1) % n;` ` ` `j = (j + 1) % m;` ` ` `}` ` ` `// Number of times the above n * m games repeat` ` ` `int` `repeat = k / (n * m);` ` ` `// Update the games won` ` ` `wins.first *= repeat;` ` ` `wins.second *= repeat;` ` ` `// Remaining number of games after` ` ` `// removing repeated games` ` ` `int` `rem = k % (n * m);` ` ` `while` `(rem--) {` ` ` `int` `res = compare(a[i], b[j]);` ` ` `// Player 1 wins the current game` ` ` `if` `(res == 1)` ` ` `wins.first++;` ` ` `// Player 2 wins the current game` ` ` `if` `(res == -1)` ` ` `wins.second++;` ` ` `i = (i + 1) % n;` ` ` `j = (j + 1) % m;` ` ` `}` ` ` `return` `wins;` `}` `// Driver code` `int` `main()` `{` ` ` `int` `k = 4;` ` ` `string a = ` `"SR"` `, b = ` `"R"` `;` ` ` `auto` `wins = countWins(k, a, b);` ` ` `cout << wins.first << ` `" "` `<< wins.second;` `}` |

## Java

`// Java implementation of the above approach` `import` `java.util.*;` `import` `java.awt.Point;` `class` `GFG{` ` ` `// Function that returns 1 if first player wins,` `// 0 in case of a draw and -1 if second player wins` `public` `static` `int` `compare(` `char` `first, ` `char` `second)` `{` ` ` ` ` `// If both players have the same move` ` ` `// then it's a draw` ` ` `if` `(first == second)` ` ` `return` `0` `;` ` ` ` ` `if` `(first == ` `'R'` `)` ` ` `{` ` ` `if` `(second == ` `'S'` `)` ` ` `return` `1` `;` ` ` `else` ` ` `return` `-` `1` `;` ` ` `}` ` ` `if` `(first == ` `'P'` `)` ` ` `{` ` ` `if` `(second == ` `'R'` `)` ` ` `return` `1` `;` ` ` `else` ` ` `return` `-` `1` `;` ` ` `}` ` ` `if` `(first == ` `'S'` `)` ` ` `{` ` ` `if` `(second == ` `'P'` `)` ` ` `return` `1` `;` ` ` `else` ` ` `return` `-` `1` `;` ` ` `}` ` ` ` ` `return` `0` `;` `}` ` ` `// Function that returns the count of games` `// won by both the players` `public` `static` `Point countWins(` `int` `k, String a,` ` ` `String b)` `{` ` ` `int` `n = a.length();` ` ` `int` `m = b.length();` ` ` `int` `i = ` `0` `, j = ` `0` `;` ` ` ` ` `// Total distinct games that` ` ` `// can be played` ` ` `int` `moves = n * m;` ` ` `Point wins = ` `new` `Point (` `0` `, ` `0` `);` ` ` ` ` `while` `(moves-- > ` `0` `)` ` ` `{` ` ` `int` `res = compare(a.charAt(i),` ` ` `b.charAt(j));` ` ` ` ` `// Player 1 wins the current game` ` ` `if` `(res == ` `1` `)` ` ` `wins = ` `new` `Point(wins.x + ` `1` `,` ` ` `wins.y);` ` ` ` ` `// Player 2 wins the current game` ` ` `if` `(res == -` `1` `)` ` ` `wins = ` `new` `Point(wins.x,` ` ` `wins.y + ` `1` `);` ` ` ` ` `i = (i + ` `1` `) % n;` ` ` `j = (j + ` `1` `) % m;` ` ` `}` ` ` ` ` `// Number of times the above` ` ` `// n * m games repeat` ` ` `int` `repeat = k / (n * m);` ` ` ` ` `// Update the games won` ` ` `wins = ` `new` `Point(wins.x * repeat,` ` ` `wins.y * repeat);` ` ` ` ` `// Remaining number of games after` ` ` `// removing repeated games` ` ` `int` `rem = k % (n * m);` ` ` ` ` `while` `(rem-- > ` `0` `)` ` ` `{` ` ` `int` `res = compare(a.charAt(i),` ` ` `b.charAt(j));` ` ` ` ` `// Player 1 wins the current game` ` ` `if` `(res == ` `1` `)` ` ` `wins = ` `new` `Point(wins.x + ` `1` `,` ` ` `wins.y);` ` ` ` ` `// Player 2 wins the current game` ` ` `if` `(res == -` `1` `)` ` ` `wins = ` `new` `Point(wins.x,` ` ` `wins.y + ` `1` `);` ` ` ` ` `i = (i + ` `1` `) % n;` ` ` `j = (j + ` `1` `) % m;` ` ` `}` ` ` `return` `wins;` `} ` `// Driver code` `public` `static` `void` `main(String[] args)` `{` ` ` `int` `k = ` `4` `;` ` ` `String a = ` `"SR"` `, b = ` `"R"` `;` ` ` `Point wins = countWins(k, a, b);` ` ` `System.out.println(wins.x + ` `" "` `+ wins.y);` `}` `}` `// This code is contributed by divyeshrabadiya07` |

## Python3

`# Python3 implementation of the above approach` `# Function that returns 1 if first` `# player wins, 0 in case of a draw` `# and -1 if second player wins` `def` `compare(first, second):` ` ` `# If both players have the same` ` ` `# move then it's a draw` ` ` `if` `(first ` `=` `=` `second):` ` ` `return` `0` ` ` `if` `(first ` `=` `=` `'R'` `):` ` ` `if` `(second ` `=` `=` `'S'` `):` ` ` `return` `1` ` ` `else` `:` ` ` `return` `-` `1` ` ` ` ` `if` `(first ` `=` `=` `'P'` `):` ` ` `if` `(second ` `=` `=` `'R'` `):` ` ` `return` `1` ` ` `else` `:` ` ` `return` `-` `1` ` ` ` ` `if` `(first ` `=` `=` `'S'` `):` ` ` `if` `(second ` `=` `=` `'P'` `):` ` ` `return` `1` ` ` `else` `:` ` ` `return` `-` `1` `# Function that returns the count` `# of games won by both the players` `def` `countWins(k, a, b):` ` ` `n ` `=` `len` `(a)` ` ` `m ` `=` `len` `(b)` ` ` `i ` `=` `0` ` ` `j ` `=` `0` ` ` `# Total distinct games that` ` ` `# can be played` ` ` `moves ` `=` `n ` `*` `m` ` ` `wins ` `=` `[ ` `0` `, ` `0` `]` ` ` ` ` `while` `(moves > ` `0` `):` ` ` `res ` `=` `compare(a[i], b[j])` ` ` `# Player 1 wins the current game` ` ` `if` `(res ` `=` `=` `1` `):` ` ` `wins[` `0` `] ` `+` `=` `1` ` ` `# Player 2 wins the current game` ` ` `if` `(res ` `=` `=` `-` `1` `):` ` ` `wins[` `1` `] ` `+` `=` `1` ` ` ` ` `i ` `=` `(i ` `+` `1` `) ` `%` `n` ` ` `j ` `=` `(j ` `+` `1` `) ` `%` `m` ` ` `moves ` `-` `=` `1` ` ` `# Number of times the above` ` ` `# n * m games repeat` ` ` `repeat ` `=` `k ` `/` `/` `(n ` `*` `m)` ` ` `# Update the games won` ` ` `wins[` `0` `] ` `*` `=` `repeat` ` ` `wins[` `1` `] ` `*` `=` `repeat` ` ` `# Remaining number of games after` ` ` `# removing repeated games` ` ` `rem ` `=` `k ` `%` `(n ` `*` `m)` ` ` `while` `(rem > ` `0` `):` ` ` `res ` `=` `compare(a[i], b[j])` ` ` `# Player 1 wins the current game` ` ` `if` `(res ` `=` `=` `1` `):` ` ` `wins[` `0` `] ` `+` `=` `1` ` ` `# Player 2 wins the current game` ` ` `if` `(res ` `=` `=` `-` `1` `):` ` ` `wins[` `1` `] ` `+` `=` `1` ` ` ` ` `i ` `=` `(i ` `+` `1` `) ` `%` `n` ` ` `j ` `=` `(j ` `+` `1` `) ` `%` `m` ` ` ` ` `return` `wins` `# Driver code` `if` `__name__ ` `=` `=` `"__main__"` `:` ` ` ` ` `k ` `=` `4` ` ` `a ` `=` `"SR"` ` ` `b ` `=` `"R"` ` ` ` ` `wins ` `=` `countWins(k, a, b);` ` ` ` ` `print` `(wins[` `0` `], wins[` `1` `])` `# This code is contributed by chitranayal` |

## C#

`// C# implementation of the above approach` `using` `System;` `using` `System.Collections.Generic; ` `class` `GFG{` ` ` `// Function that returns 1 if first player` `// wins, 0 in case of a draw and -1 if` `// second player wins` `static` `int` `compare(` `char` `first, ` `char` `second)` `{` ` ` ` ` `// If both players have the same` ` ` `// move then it's a draw` ` ` `if` `(first == second)` ` ` `return` `0;` ` ` ` ` `if` `(first == ` `'R'` `)` ` ` `{` ` ` `if` `(second == ` `'S'` `)` ` ` `return` `1;` ` ` `else` ` ` `return` `-1;` ` ` `}` ` ` `if` `(first == ` `'P'` `)` ` ` `{` ` ` `if` `(second == ` `'R'` `)` ` ` `return` `1;` ` ` `else` ` ` `return` `-1;` ` ` `}` ` ` `if` `(first == ` `'S'` `)` ` ` `{` ` ` `if` `(second == ` `'P'` `)` ` ` `return` `1;` ` ` `else` ` ` `return` `-1;` ` ` `}` ` ` `return` `0;` `}` ` ` `// Function that returns the count of games` `// won by both the players` `static` `Tuple<` `int` `, ` `int` `> countWins(` `int` `k, ` `string` `a,` ` ` `string` `b)` `{` ` ` `int` `n = a.Length;` ` ` `int` `m = b.Length;` ` ` `int` `i = 0, j = 0;` ` ` ` ` `// Total distinct games that` ` ` `// can be played` ` ` `int` `moves = n * m;` ` ` `Tuple<` `int` `, ` `int` `> wins = Tuple.Create(0, 0);` ` ` ` ` `while` `(moves-- > 0)` ` ` `{` ` ` `int` `res = compare(a[i], b[j]);` ` ` ` ` `// Player 1 wins the current game` ` ` `if` `(res == 1)` ` ` `wins = Tuple.Create(wins.Item1 + 1,` ` ` `wins.Item2);` ` ` ` ` `// Player 2 wins the current game` ` ` `if` `(res == -1)` ` ` `wins = Tuple.Create(wins.Item1,` ` ` `wins.Item2 + 1);` ` ` ` ` `i = (i + 1) % n;` ` ` `j = (j + 1) % m;` ` ` `}` ` ` ` ` `// Number of times the above` ` ` `// n * m games repeat` ` ` `int` `repeat = k / (n * m);` ` ` ` ` `// Update the games won` ` ` `wins = Tuple.Create(wins.Item1 * repeat,` ` ` `wins.Item2 * repeat);` ` ` ` ` `// Remaining number of games after` ` ` `// removing repeated games` ` ` `int` `rem = k % (n * m);` ` ` ` ` `while` `(rem-- > 0)` ` ` `{` ` ` `int` `res = compare(a[i], b[j]);` ` ` ` ` `// Player 1 wins the current game` ` ` `if` `(res == 1)` ` ` `wins = Tuple.Create(wins.Item1 + 1,` ` ` `wins.Item2);` ` ` ` ` `// Player 2 wins the current game` ` ` `if` `(res == -1)` ` ` `wins = Tuple.Create(wins.Item1,` ` ` `wins.Item2 + 1);` ` ` ` ` `i = (i + 1) % n;` ` ` `j = (j + 1) % m;` ` ` `}` ` ` `return` `wins;` `}` `// Driver Code` `static` `void` `Main()` `{` ` ` `int` `k = 4;` ` ` `string` `a = ` `"SR"` `, b = ` `"R"` `;` ` ` `Tuple<` `int` `, ` `int` `> wins = countWins(k, a, b);` ` ` ` ` `Console.WriteLine(wins.Item1 + ` `" "` `+` ` ` `wins.Item2);` `}` `}` `// This code is contributed by divyesh072019` |

**Output:**

0 2

**Time Complexity:** O(N * M)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready. To complete your preparation from learning a language to DS Algo and many more, please refer **Complete Interview Preparation Course****.**

In case you wish to attend live classes with industry experts, please refer **Geeks Classes Live** and **Geeks Classes Live USA**