Skip to content
Related Articles

Related Articles

Improve Article

Number of ways to reach Nth floor by taking at-most K leaps

  • Difficulty Level : Easy
  • Last Updated : 31 May, 2021

Given N number of stairs. Also given the number of steps that one can cover at most in one leap (K). The task is to find the number of possible ways one (only consider combinations) can climb to the top of the building in K leaps or less from the ground floor.
Examples: 
 

Input: N = 5, K = 3 
Output:
To reach stair no-5 we can choose following combination of leaps: 
1 1 1 1 1 
1 1 1 2 
1 2 2 
1 1 3 
2 3 
Therefore the answer is 5.
Input: N = 29, K = 5 
Output: 603 
 

 

Let combo[i] be the number of ways to reach the i-th floor. Hence the number of ways to reach combo[i] from combo[j] by taking a leap of i-j will be combo[i] += combo[j]. So iterate for all possible leaps, and for each possible leaps keep adding the possible combinations to the combo array. The final answer will be stored in combo[N]. 
Below is the implementation of the above approach. 
 

C++




// C++ program to reach N-th stair
// by taking a maximum of K leap
#include <bits/stdc++.h>
 
using namespace std;
 
int solve(int N, int K)
{
 
    // elements of combo[] stores the no of
    // possible ways to reach it by all
    // combinations of k leaps or less
 
    int combo[N + 1] = { 0 };
 
    // assuming leap 0 exist and assigning
    // its value to 1 for calculation
    combo[0] = 1;
 
    // loop to iterate over all
    // possible leaps upto k;
    for (int i = 1; i <= K; i++) {
 
        // in this loop we count all possible
        // leaps to reach the jth stair with
        // the help of ith leap or less
        for (int j = 0; j <= N; j++) {
 
            // if the leap is not more than the i-j
            if (j >= i) {
 
                // calculate the value and
                // store in combo[j]
                // to reuse it for next leap
                // calculation for the jth stair
                combo[j] += combo[j - i];
            }
        }
    }
 
    // returns the no of possible number
    // of leaps to reach the top of
    // building of n stairs
    return combo[N];
}
 
// Driver Code
int main()
{
    // N i the no of total stairs
    // K is the value of the greatest leap
    int N = 29;
    int K = 5;
 
    cout << solve(N, K);
 
    solve(N, K);
    return 0;
}

Java




// Java program to reach N-th
// stair by taking a maximum
// of K leap
class GFG
{
static int solve(int N, int K)
{
 
    // elements of combo[] stores
    // the no. of possible ways
    // to reach it by all combinations
    // of k leaps or less
    int[] combo;
    combo = new int[50];
 
    // assuming leap 0 exist
    // and assigning its value
    // to 1 for calculation
    combo[0] = 1;
 
    // loop to iterate over all
    // possible leaps upto k;
    for (int i = 1; i <= K; i++)
    {
 
        // in this loop we count all
        // possible leaps to reach
        // the jth stair with the
        // help of ith leap or less
        for (int j = 0; j <= N; j++)
        {
 
            // if the leap is not
            // more than the i-j
            if (j >= i)
            {
 
                // calculate the value and
                // store in combo[j] to
                // reuse it for next leap
                // calculation for the
                // jth stair
                combo[j] += combo[j - i];
            }
        }
    }
 
    // returns the no of possible
    // number of leaps to reach
    // the top of building of
    // n stairs
    return combo[N];
}
 
// Driver Code
public static void main(String args[])
{
    // N i the no of total stairs
    // K is the value of the
    // greatest leap
    int N = 29;
    int K = 5;
 
    System.out.println(solve(N, K));
 
    solve(N, K);
}
}
 
// This code is contributed
// by ankita_saini

Python 3




# Python3 program to reach N-th stair
# by taking a maximum of K leap
 
def solve(N, K) :
 
    # elements of combo[] stores the no of 
    # possible ways to reach it by all 
    # combinations of k leaps or less
    combo = [0] * (N + 1)
 
    # assuming leap 0 exist and assigning 
    # its value to 1 for calculation
    combo[0] = 1
 
    # loop to iterate over all 
    # possible leaps upto k;
    for i in range(1, K + 1) :
 
        #  in this loop we count all possible 
        # leaps to reach the jth stair with 
        # the help of ith leap or less 
        for j in range(0, N + 1) :
 
            # if the leap is not more than the i-j 
            if j >= i :
 
                # calculate the value and 
                # store in combo[j] 
                # to reuse it for next leap 
                # calculation for the jth stair
                combo[j] += combo[j - i]
 
 
    # returns the no of possible number 
    # of leaps to reach the top of 
    # building of n stairs 
    return combo[N]
   
# Driver Code
if __name__ == "__main__" :
 
    # N i the no of total stairs 
    # K is the value of the greatest leap
    N, K = 29, 5
 
    print(solve(N, K))
 
# This code is contributed by ANKITRAI1

C#




// C# program to reach N-th
// stair by taking a maximum
// of K leap
using System;
 
class GFG
{
static int solve(int N, int K)
{
 
    // elements of combo[] stores
    // the no. of possible ways
    // to reach it by all combinations
    // of k leaps or less
    int[] combo;
    combo = new int[50];
 
    // assuming leap 0 exist
    // and assigning its value
    // to 1 for calculation
    combo[0] = 1;
 
    // loop to iterate over all
    // possible leaps upto k;
    for (int i = 1; i <= K; i++)
    {
 
        // in this loop we count all
        // possible leaps to reach
        // the jth stair with the
        // help of ith leap or less
        for (int j = 0; j <= N; j++)
        {
 
            // if the leap is not
            // more than the i-j
            if (j >= i)
            {
 
                // calculate the value and
                // store in combo[j] to
                // reuse it for next leap
                // calculation for the
                // jth stair
                combo[j] += combo[j - i];
            }
        }
    }
 
    // returns the no of possible
    // number of leaps to reach
    // the top of building of
    // n stairs
    return combo[N];
}
 
// Driver Code
public static void Main()
{
    // N i the no of total stairs
    // K is the value of the
    // greatest leap
    int N = 29;
    int K = 5;
 
    Console.WriteLine(solve(N, K));
    solve(N, K);
}
}
 
// This code is contributed
// by Akanksha Rai(Abby_akku)

PHP




<?php
error_reporting(0);
// PHP program to reach N-th
// stair by taking a maximum
// of K leap
function solve($N, $K)
{
 
    // elements of combo[] stores
    // the no of possible ways to
    // reach it by all combinations
    // of k leaps or less
    $combo[$N + 1] = array();
 
    // assuming leap 0 exist and
    // assigning its value to 1
    // for calculation
    $combo[0] = 1;
     
    // loop to iterate over all
    // possible leaps upto k;
    for ($i = 1; $i <= $K; $i++)
    {
 
        // in this loop we count
        // all possible leaps to
        // reach the jth stair with
        // the help of ith leap or less
        for ($j = 0; $j <= $N; $j++)
        {
            // if the leap is not
            // more than the i-j
            if ($j >= $i)
            {
 
                // calculate the value and
                // store in combo[j]
                // to reuse it for next leap
                // calculation for the jth stair
                $combo[$j] += $combo[$j - $i];
            }
        }
    }
 
    // returns the no of possible
    // number of leaps to reach
    // the top of building of n stairs
    return $combo[$N];
}
 
// Driver Code
 
// N i the no of total stairs
// K is the value of the greatest leap
$N = 29;
$K = 5;
 
echo solve($N, $K);
 
solve($N, $K);
 
// This code is contributed
// by Akanksha Rai(Abby_akku)
?>

Javascript




<script>
    // Javascript program to reach N-th
    // stair by taking a maximum
    // of K leap
     
    function solve(N, K)
    {
 
        // elements of combo[] stores
        // the no. of possible ways
        // to reach it by all combinations
        // of k leaps or less
        let combo = new Array(50);
        combo.fill(0);
 
        // assuming leap 0 exist
        // and assigning its value
        // to 1 for calculation
        combo[0] = 1;
 
        // loop to iterate over all
        // possible leaps upto k;
        for (let i = 1; i <= K; i++)
        {
 
            // in this loop we count all
            // possible leaps to reach
            // the jth stair with the
            // help of ith leap or less
            for (let j = 0; j <= N; j++)
            {
 
                // if the leap is not
                // more than the i-j
                if (j >= i)
                {
 
                    // calculate the value and
                    // store in combo[j] to
                    // reuse it for next leap
                    // calculation for the
                    // jth stair
                    combo[j] += combo[j - i];
                }
            }
        }
 
        // returns the no of possible
        // number of leaps to reach
        // the top of building of
        // n stairs
        return combo[N];
    }
     
    // N i the no of total stairs
    // K is the value of the
    // greatest leap
    let N = 29;
    let K = 5;
   
    document.write(solve(N, K));
    solve(N, K);
     
    // This code is contributed by decode2207.
</script>
Output: 



603

 

Time Complexity: O(N*K) 
Auxiliary Space: O(N)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :