Number of ways to reach (M, N) in a matrix starting from the origin without visiting (X, Y)

Given four positive integers M, N, X, and Y, the task is to count all the possible ways to reach from top left(i.e., (0, 0)) to the bottom right (M, N) of a matrix of size (M+1)x(N+1) without visiting the cell (X, Y). It is given that from each cell (i, j) you can either move only to right (i, j + 1) or down (i + 1, j).
Examples: 

Input: M = 2, N = 2, X = 1, Y = 1 
Output:
Explanation: 
There are only 2 ways to reach (2, 2) without visiting (1, 1) and the two paths are: 
(0, 0) -> (0, 1) -> (0, 2) -> (1, 2) -> (2, 2) 
(0, 0) -> (1, 0) -> (2, 0) -> (2, 1) -> (2, 2)

Input: M = 5, N = 4, X = 3, Y = 2 
Output: 66 
Explanation: 
There are 66 ways to reach (5, 4) without visiting (3, 2). 
 

Approach:

To solve the problem mentioned above the idea is to subtract the number of ways to reach from (0, 0) to (X, Y) which was followed by reaching (M, N) from (X, Y) by visiting (X, Y) from the total number of ways reaching (M, N) from (0, 0)
Therefore, 

  1. The number of ways to reach from (M, N) from the origin (0, 0) is given by: 

    \text{Total ways from (0, 0) to (M, N)} = \binom{M + N}{M}



  2. The number of ways to reach (M, N) only by visiting (X, Y) is reaching (X, Y) from (0, 0) which was followed by reaching (M, N) from (X, Y) is given by: 

    \text{Total ways from (0, 0) to (X, Y)} = \binom{X + Y}{X}
    \text{Total ways from (X, Y) to (M, N)} = \binom{M + N - X - Y}{M - X}

    Therefore, 

    \text{Total ways from (0, 0) to (M, N) only by visting (X, Y)} = (\binom{X + Y}{X}) * (\binom{M + N - X - Y}{M - X})

    Hence, the equation for the total number of ways are: 

    \binom{M + N}{M} - (\binom{X + Y}{X}) * (\binom{M + N - X - Y}{M - X})

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program from the above approach
#include <bits/stdc++.h>
using namespace std;
  
int fact(int n);
  
// Function for computing nCr
int nCr(int n, int r)
{
    return fact(n)
           / (fact(r) * fact(n - r));
}
  
// Function to find factorial of a number
int fact(int n)
{
    int res = 1;
  
    for (int i = 2; i <= n; i++)
        res = res * i;
  
    return res;
}
  
// Function for counting the number
// of ways to reach (m, n) without
// visiting (x, y)
int countWays(int m, int n, int x, int y)
{
    return nCr(m + n, m)
           - nCr(x + y, x) * nCr(m + n
                                     - x - y,
                                 m - x);
}
  
// Driver Code
int main()
{
    // Given Dimensions of Matrix
    int m = 5;
    int n = 4;
  
    // Cell not to be visited
    int x = 3;
    int y = 2;
  
    // Function Call
    cout << countWays(m, n, x, y);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program from the above approach     
import java.util.*;     
class GFG{    
      
// Function for computing nCr     
public static int nCr(int n, int r)         
{     
    return fact(n) / (fact(r) * fact(n - r));         
}     
          
// Function to find factorial of a number     
public static int fact(int n)     
{     
    int res = 1;
      
    for(int i = 2; i <= n; i++)         
        res = res * i;         
    return res;         
}     
          
// Function for counting the number         
// of ways to reach (m, n) without         
// visiting (x, y)         
public static int countWays(int m, int n,
                            int x, int y)         
{     
    return nCr(m + n, m) - 
           nCr(x + y, x) * 
           nCr(m + n - x - y, m - x);         
  
// Driver code
public static void main(String[] args)
{     
      
    // Given Dimensions of Matrix     
    int m = 5;         
    int n = 4;         
              
    // Cell not to be visited     
    int x = 3;         
    int y = 2;         
              
    // Function Call     
    System.out.println(countWays(m, n, x, y));     
}     
}
  
// This code is contributed by divyeshrabadiya07

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the above approach
  
# Function for computing nCr
def nCr(n, r):
      
    return (fact(n) // (fact(r) * 
                        fact(n - r)))
  
# Function to find factorial of a number
def fact(n):
      
    res = 1
    for i in range(2, n + 1):
        res = res * i
  
    return res
  
# Function for counting the number
# of ways to reach (m, n) without
# visiting (x, y)
def countWays(m, n, x, y):
      
    return (nCr(m + n, m) - nCr(x + y, x) * 
            nCr(m + n - x - y, m - x))
  
# Driver Code
  
# Given dimensions of Matrix
m = 5
n = 4
  
# Cell not to be visited
x = 3
y = 2
  
# Function call
print(countWays(m, n, x, y))
  
# This code is contributed by sanjoy_62

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program from the above approach     
using System;
  
class GFG{ 
      
// Function for computing nCr     
public static int nCr(int n, int r)         
{     
    return fact(n) / (fact(r) * fact(n - r));         
}     
          
// Function to find factorial of a number     
public static int fact(int n)     
{     
    int res = 1;
      
    for(int i = 2; i <= n; i++)         
        res = res * i;
          
    return res;         
}     
          
// Function for counting the number         
// of ways to reach (m, n) without         
// visiting (x, y)         
public static int countWays(int m, int n,
                            int x, int y)         
{     
    return nCr(m + n, m) - 
           nCr(x + y, x) * 
           nCr(m + n - x - y, m - x);         
  
// Driver code
public static void Main(String[] args)
{     
      
    // Given dimensions of Matrix     
    int m = 5;         
    int n = 4;         
              
    // Cell not to be visited     
    int x = 3;         
    int y = 2;         
              
    // Function call     
    Console.WriteLine(countWays(m, n, x, y));     
}     
}
  
// This code is contributed by Rajput-Ji

chevron_right


Output: 

66

 

competitive-programming-img




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.