Skip to content
Related Articles

Related Articles

Number of ways to obtain each numbers in range [1, b+c] by adding any two numbers in range [a, b] and [b, c]

View Discussion
Improve Article
Save Article
  • Difficulty Level : Hard
  • Last Updated : 23 May, 2022

Given three integers a, b and c. You need to select one integer from the range [a, b] and one integer from the range [b, c] and add them. The task to calculate the number of ways to obtain the sum for all the numbers in the range [1, b+c].

Examples: 

Input: a = 1, b = 2, c = 2 
Output: 0, 0, 1, 1 
Explanation: 
The numbers to be obtained are [1, b+c] = [1, 4] = {1, 2, 3, 4} 
Therefore, the number of ways to obtain each are: 
1 – can’t be obtained 
2 – can’t be obtained 
3 – only one way. select {1} from range [a, b] and {2} from range [b, c] – 1 + 2 = 3 
4 – only one way. select {2} from range [a, b] and {2} from range [b, c] – 2 + 2 = 4

Input: a = 1, b = 3, c = 4 
Output: 0, 0, 0, 1, 2, 2, 1 
 

Simple Approach:  

  • A simple brute force solution will be to use a nested loop where exterior loop traverses from i = a to i = b and inner loop from j = b to j = c inclusive. 
  • We will initialise array a of size b + c + 1 with zero. Now in loops, we will increment the index at i+j, i.e., (a[i+j]++)
  • We will simply print the array at the end.

Below is the implementation of the above approach. 

C++




// C++ program to calculate
// the number of ways
 
#include <bits/stdc++.h>
using namespace std;
 
void CountWays(int a, int b, int c)
{
    int x = b + c + 1;
    int arr[x] = { 0 };
 
    // Initialising the array with zeros.
    // You can do using memset too.
    for (int i = a; i <= b; i++) {
        for (int j = b; j <= c; j++) {
            arr[i + j]++;
        }
    }
    // Printing the array
    for (int i = 1; i < x; i++) {
        cout << arr[i] << " ";
    }
    cout << endl;
}
// Driver code
int main()
{
    int a = 1;
    int b = 2;
    int c = 2;
 
    CountWays(a, b, c);
 
    return 0;
}

Java




// Java program to calculate
// the number of ways
class GFG{
     
public static void CountWays(int a, int b,
                                    int c)
{
    int x = b + c + 1;
    int[] arr = new int[x];
     
    // Initialising the array with zeros.
    // You can do using memset too.
    for(int i = a; i <= b; i++)
    {
       for(int j = b; j <= c; j++)
       {
          arr[i + j]++;
       }
    }
     
    // Printing the array
    for(int i = 1; i < x; i++)
    {
       System.out.print(arr[i] + " ");
    }
}
 
// Driver code
public static void main(String[] args)
{
    int a = 1;
    int b = 2;
    int c = 2;
     
    CountWays(a, b, c);
}
}
 
// This code is contributed by divyeshrabadiya07

Python3




# Python3 program to calculate
# the number of ways
def CountWays(a, b, c):
     
    x = b + c + 1;
    arr = [0] * x;
 
    # Initialising the array with zeros.
    # You can do using memset too.
    for i in range(a, b + 1):
        for j in range(b, c + 1):
            arr[i + j] += 1;
 
    # Printing the array
    for i in range(1, x):
        print(arr[i], end = " ");
         
# Driver code
if __name__ == '__main__':
     
    a = 1;
    b = 2;
    c = 2;
 
    CountWays(a, b, c);
     
# This code is contributed by Rajput-Ji

C#




// C# program to calculate
// the number of ways
using System;
class GFG{
     
public static void CountWays(int a, int b,
                                    int c)
{
    int x = b + c + 1;
    int[] arr = new int[x];
     
    // Initialising the array with zeros.
    // You can do using memset too.
    for(int i = a; i <= b; i++)
    {
        for(int j = b; j <= c; j++)
        {
            arr[i + j]++;
        }
    }
     
    // Printing the array
    for(int i = 1; i < x; i++)
    {
        Console.Write(arr[i] + " ");
    }
}
 
// Driver code
public static void Main()
{
    int a = 1;
    int b = 2;
    int c = 2;
     
    CountWays(a, b, c);
}
}
 
// This code is contributed by rutvik_56

Javascript




<script>
 
    // Javascript program to calculate
    // the number of ways
     
    function CountWays(a, b, c)
    {
        let x = b + c + 1;
        let arr = new Array(x);
        arr.fill(0);
 
        // Initialising the array with zeros.
        // You can do using memset too.
        for (let i = a; i <= b; i++) {
            for (let j = b; j <= c; j++) {
                arr[i + j]++;
            }
        }
        // Printing the array
        for (let i = 1; i < x; i++) {
            document.write(arr[i] + " ");
        }
        document.write("</br>");
    }
     
    // Driver code
     
    let a = 1;
    let b = 2;
    let c = 2;
  
    CountWays(a, b, c);
     
</script>

Output: 

0 0 1 1

 

Time Complexity: O((b-a)*(c-b)), which in the worst case is O(c2)

Auxiliary Space: O(x), as We are using extra space.

Efficient Approach: The idea is to use Prefix Sum logic to solve this problem. 

  1. We will traverse i from [a, b] and for every i we will simply increment the value of starting interval arr[i + b] by 1 and decrement the value of ending interval arr[i + c + 1] by 1. 
  2. Now all we need to do is to calculate the prefix sum of the array ( arr[i]+ = arr[i-1] ) and print the array. 

Lets see the approach with the help of an example. 
Why does this work? 

For example: a = 1, b = 2, c = 2, we will encounter only two values of i 
i = 1 = > arr[1+2]++; arr[1+2+1]–; 
i = 2 = > arr[2+2]++; arr[2+2+1]–; 
arr = {0, 0, 0, 1, 0, -1}; 
prefix sums: 
arr = {0, 0, 0, 1, 1, 0}; 
Now carefully look and realise that this is our answer.
So what we do at particular index i is arr[i+b]++ and arr[i+c+1]–;
Now we are using prefix sums so all the values will be incremented by 1 between i+b and infinite(We won’t go there but will result in prefix sum increment by 1 and as soon as we do a decrement at i+c+1 all the values between i+c+1 and infinite will be decreased by one. 
So effectively all the values in the range [i+b, i+c] are incremented by one, and rest all the values will remain unaffected. 
 

Below is the implementation of the above approach. 

C++




// C++ program to calculate
// the number of ways
 
#include <bits/stdc++.h>
using namespace std;
 
void CountWays(int a, int b, int c)
{
    // 2 is added because sometimes
    // we will decrease the
    // value out of bounds.
    int x = b + c + 2;
 
    // Initialising the array with zeros.
    // You can do using memset too.
    int arr[x] = { 0 };
 
    for (int i = 1; i <= b; i++) {
        arr[i + b]++;
        arr[i + c + 1]--;
    }
 
    // Printing the array
    for (int i = 1; i < x - 1; i++) {
        arr[i] += arr[i - 1];
        cout << arr[i] << " ";
    }
    cout << endl;
}
 
// Driver code
int main()
{
    int a = 1;
    int b = 2;
    int c = 2;
 
    CountWays(a, b, c);
 
    return 0;
}

Java




// Java program to calculate
// the number of ways
import java.util.*;
 
class GFG{
 
static void CountWays(int a, int b, int c)
{
     
    // 2 is added because sometimes
    // we will decrease the
    // value out of bounds.
    int x = b + c + 2;
 
    // Initialising the array with zeros.
    int arr[] = new int[x];
 
    for(int i = 1; i <= b; i++)
    {
       arr[i + b]++;
       arr[i + c + 1]--;
    }
 
    // Printing the array
    for(int i = 1; i < x - 1; i++)
    {
       arr[i] += arr[i - 1];
       System.out.print(arr[i] + " ");
    }
    System.out.println();
}
 
// Driver code
public static void main(String[] args)
{
    int a = 1;
    int b = 2;
    int c = 2;
 
    CountWays(a, b, c);
}
}
 
// This code is contributed by Rohit_ranjan

Python3




# Python3 program to calculate
# the number of ways
def CountWays(a, b, c):
      
    # 2 is added because sometimes
    # we will decrease the
    # value out of bounds.
    x = b + c + 2;
  
    # Initialising the array with zeros.
    arr = [0] * x;
  
    for i in range(1, b+1):
       arr[i + b] = arr[i + b] + 1;
       arr[i + c + 1] = arr[i + c + 1] -1;
     
  
    # Printing the array
    for i in range(1, x-1):
     
       arr[i] += arr[i - 1];
       print(arr[i], end = " ");
 
  
# Driver code
if __name__ == '__main__':
      
    a = 1;
    b = 2;
    c = 2;
  
    CountWays(a, b, c);
      
# This code is contributed by rock_cool

C#




// C# program to calculate
// the number of ways
using System;
class GFG{
 
static void CountWays(int a, int b, int c)
{
     
    // 2 is added because sometimes
    // we will decrease the
    // value out of bounds.
    int x = b + c + 2;
 
    // Initialising the array with zeros.
    int []arr = new int[x];
 
    for(int i = 1; i <= b; i++)
    {
        arr[i + b]++;
        arr[i + c + 1]--;
    }
 
    // Printing the array
    for(int i = 1; i < x - 1; i++)
    {
        arr[i] += arr[i - 1];
        Console.Write(arr[i] + " ");
    }
    Console.WriteLine();
}
 
// Driver code
public static void Main()
{
    int a = 1;
    int b = 2;
    int c = 2;
 
    CountWays(a, b, c);
}
}
 
// This code is contributed by Code_Mech

Javascript




<script>
 
// Javascript program to calculate
// the number of ways
function CountWays(a, b, c)
{
     
    // 2 is added because sometimes
    // we will decrease the
    // value out of bounds.
    let x = b + c + 2;
 
    // Initialising the array with zeros.
    // You can do using memset too.
    let arr = new Array(x);
    arr.fill(0);
 
    for(let i = 1; i <= b; i++)
    {
        arr[i + b]++;
        arr[i + c + 1]--;
    }
 
    // Printing the array
    for(let i = 1; i < x - 1; i++)
    {
        arr[i] += arr[i - 1];
        document.write(arr[i] + " ");
    }
    document.write("</br>");
}
 
// Driver code
let a = 1;
let b = 2;
let c = 2;
 
CountWays(a, b, c);
 
// This code is contributed by rameshtravel07 
 
</script>

Output: 

0 0 1 1

 

Time complexity: O(b+c), as we are using loop to traverse b+c times.

Auxiliary Space: O(b+c), as we are using extra space.


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!