Number of ways to divide string in sub-strings such to make them in lexicographically increasing sequence

Given a string S, the task is to find the number of ways to divide/partition the given string in sub-strings S1, S2, S3, …, Sk such that S1 < S2 < S3 < … < Sk (Lexicographically).

Examples:

Input: S = “aabc”
Output: 6
Following are the allowed partitions:
{“aabc”}, {“aa”, “bc”}, {“aab”, “c”}, {“a”, “abc”},
{“a, “ab”, “c”} and {“aa”, “b”, “c”}.



Input: S = “za”
Output: 1
Only possible partition is {“za”}.

Approach: This problem can be solved using dynamic programming.

Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to return the number of
// ways of partioning
int ways(string s, int n)
{
  
    int dp[n][n];
  
    // Initialize DP table
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++) {
            dp[i][j] = 0;
        }
  
    // Base Case
    for (int i = 0; i < n; i++)
        dp[0][i] = 1;
  
    for (int i = 1; i < n; i++) {
  
        // To store sub-string S[i][j]
        string temp;
        for (int j = i; j < n; j++) {
            temp += s[j];
  
            // To store sub-string S[k][i-1]
            string test;
            for (int k = i - 1; k >= 0; k--) {
                test += s[k];
                if (test < temp) {
                    dp[i][j] += dp[k][i - 1];
                }
            }
        }
    }
  
    int ans = 0;
    for (int i = 0; i < n; i++) {
        // Add all the ways where S[i][n-1]
        // will be the last partition
        ans += dp[i][n - 1];
    }
  
    return ans;
}
  
// Driver code
int main()
{
    string s = "aabc";
    int n = s.length();
  
    cout << ways(s, n);
  
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the above approach 
class GFG 
{
    // Function to return the number of 
    // ways of partioning 
    static int ways(String s, int n) 
    
        int dp[][] = new int[n][n]; 
      
        // Initialize DP table 
        for (int i = 0; i < n; i++) 
            for (int j = 0; j < n; j++)
            
                dp[i][j] = 0
            
      
        // Base Case 
        for (int i = 0; i < n; i++) 
            dp[0][i] = 1
      
        for (int i = 1; i < n; i++)
        
      
            // To store sub-string S[i][j] 
            String temp = ""
            for (int j = i; j < n; j++) 
            
                temp += s.charAt(j); 
      
                // To store sub-string S[k][i-1] 
                String test = ""
                for (int k = i - 1; k >= 0; k--)
                
                    test += s.charAt(k); 
                    if (test.compareTo(temp) < 0
                    
                        dp[i][j] += dp[k][i - 1]; 
                    
                
            
        
      
        int ans = 0
        for (int i = 0; i < n; i++)
        
            // Add all the ways where S[i][n-1] 
            // will be the last partition 
            ans += dp[i][n - 1]; 
        
        return ans; 
    
      
    // Driver code 
    public static void main (String[] args) 
    
        String s = "aabc"
        int n = s.length(); 
      
        System.out.println(ways(s, n)); 
    
}
  
// This code is contributed by AnkitRai01
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach
  
# Function to return the number of
# ways of partioning
def ways(s, n):
  
    dp = [[0 for i in range(n)]
             for i in range(n)]
  
    # Base Case
    for i in range(n):
        dp[0][i] = 1
  
    for i in range(1, n):
  
        # To store sub-S[i][j]
        temp = ""
        for j in range(i, n):
            temp += s[j]
  
            # To store sub-S[k][i-1]
            test = ""
            for k in range(i - 1, -1, -1):
                test += s[k]
                if (test < temp):
                    dp[i][j] += dp[k][i - 1]
  
    ans = 0
    for i in range(n):
          
        # Add all the ways where S[i][n-1]
        # will be the last partition
        ans += dp[i][n - 1]
  
    return ans
  
# Driver code
s = "aabc"
n = len(s)
  
print(ways(s, n))
  
# This code is contributed by Mohit Kumarv
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the above approach 
using System;
  
class GFG 
{
    // Function to return the number of 
    // ways of partioning 
    static int ways(String s, int n) 
    
        int [,]dp = new int[n, n]; 
      
        // Initialize DP table 
        for (int i = 0; i < n; i++) 
            for (int j = 0; j < n; j++)
            
                dp[i, j] = 0; 
            
      
        // Base Case 
        for (int i = 0; i < n; i++) 
            dp[0, i] = 1; 
      
        for (int i = 1; i < n; i++)
        
      
            // To store sub-string S[i,j] 
            String temp = ""
            for (int j = i; j < n; j++) 
            
                temp += s[j]; 
      
                // To store sub-string S[k,i-1] 
                String test = ""
                for (int k = i - 1; k >= 0; k--)
                
                    test += s[k]; 
                    if (test.CompareTo(temp) < 0) 
                    
                        dp[i, j] += dp[k, i - 1]; 
                    
                
            
        
      
        int ans = 0; 
        for (int i = 0; i < n; i++)
        
            // Add all the ways where S[i,n-1] 
            // will be the last partition 
            ans += dp[i, n - 1]; 
        
        return ans; 
    
      
    // Driver code 
    public static void Main (String[] args) 
    
        String s = "aabc"
        int n = s.Length; 
      
        Console.WriteLine(ways(s, n)); 
    
}
  
// This code is contributed by PrinciRaj1992
chevron_right

Output:
6



Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.





Article Tags :