Skip to content
Related Articles

Related Articles

Number of ways to divide a N elements equally into group of at least 2

View Discussion
Improve Article
Save Article
Like Article
  • Last Updated : 27 Jan, 2022

Given an integer N denoting the number of elements, the task is to find the number of ways to divide these elements equally into groups such that each group has at least 2 elements.

Examples:

Input: N = 2 
Output: 1
Explanation: There can be only one group.

Input: N = 10
Output: 3
Explanation: There are 3 ways to divide elements:
One group having all the 10 elements.
Two groups where each group has 5 elements.
Five groups where each group has 2 elements.

 

Approach: The above problem can be solved using the below-given brute force approach. In every iteration of the loop, i represents the number of groups. If N is completely divisible by i, hence, the elements can be equally divided among groups. Follow the steps below to solve the problem:

  • Declare variable ways and initialize it by 0.
  • Iterate over the range [1, N/2] using the variable i and perform the following tasks:
    • Check if N is completely divisible by i.
    • If yes, then increment ways by 1.
  • After performing the above steps, print the value of ways as the answer.

Below is the implementation of the above approach:

C++




// C++ program for the given approach
#include <iostream>
using namespace std;
 
// Function to find the number of ways
int numberofWays(int N)
{
    // Variable to store the number of ways
    int ways = 0;
    int i;
 
    // Loop to find total number of ways
    for (i = 1; i <= N / 2; i++) {
        if (N % i == 0)
            ways++;
    }
 
    // Returning the number of ways
    return ways;
}
 
// Driver Code
int main()
{
 
    // Declaring and initialising N
    int N = 10;
 
    // Function call
    int ans = numberofWays(N);
 
    // Displaying the answer on screen
    cout << ans;
    return 0;
}

Java




// Java program for the above approach
import java.io.*;
import java.lang.*;
import java.util.*;
 
class GFG {
 
  // Function to find the number of ways
  static int numberofWays(int N)
  {
    // Variable to store the number of ways
    int ways = 0;
    int i;
 
    // Loop to find total number of ways
    for (i = 1; i <= N / 2; i++) {
      if (N % i == 0)
        ways++;
    }
 
    // Returning the number of ways
    return ways;
  }
 
  public static void main (String[] args)
  {
 
    // Declaring and initialising N
    int N = 10;
 
    // Function call
    int ans = numberofWays(N);
 
    // Displaying the answer on screen
    System.out.print(ans);
  }
}
 
// This code is contributed by hrithikgarg03188

Python3




# Python code for the above approach
 
# Function to find the number of ways
def numberofWays(N):
 
    # Variable to store the number of ways
    ways = 0;
    i = None
 
    # Loop to find total number of ways
    for i in range(1, (N // 2) + 1):
        if (N % i == 0):
            ways += 1
 
    # Returning the number of ways
    return ways;
 
# Driver Code
 
# Declaring and initialising N
N = 10;
 
# Function call
ans = numberofWays(N);
 
# Displaying the answer on screen
print(ans);
 
# This code is contributed by Saurabh Jaiswal

C#




// C# program for the above approach
using System;
 
class GFG {
 
  // Function to find the number of ways
  static int numberofWays(int N)
  {
    // Variable to store the number of ways
    int ways = 0;
    int i;
 
    // Loop to find total number of ways
    for (i = 1; i <= N / 2; i++) {
      if (N % i == 0)
        ways++;
    }
 
    // Returning the number of ways
    return ways;
  }
 
  public static void Main(string[] args)
  {
 
    // Declaring and initialising N
    int N = 10;
 
    // Function call
    int ans = numberofWays(N);
 
    // Displaying the answer on screen
    Console.WriteLine(ans);
  }
}
 
// This code is contributed by ukasp.

Javascript




<script>
        // JavaScript code for the above approach
 
        // Function to find the number of ways
        function numberofWays(N)
        {
         
            // Variable to store the number of ways
            let ways = 0;
            let i;
 
            // Loop to find total number of ways
            for (i = 1; i <= Math.floor(N / 2); i++) {
                if (N % i == 0)
                    ways++;
            }
 
            // Returning the number of ways
            return ways;
        }
 
        // Driver Code
 
        // Declaring and initialising N
        let N = 10;
 
        // Function call
        let ans = numberofWays(N);
 
        // Displaying the answer on screen
        document.write(ans);
 
  // This code is contributed by Potta Lokesh
    </script>

Output

3

Time Complexity: O(N)
Auxiliary Space: O(1)


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!